Unravelling the Association Between Amyloid-PET and Cerebrospinal Fluid Biomarkers in the Alzheimer’s Disease Spectrum: Who Really Deserves an A+?

2021 ◽  
pp. 1-12
Author(s):  
Luca Sacchi ◽  
Tiziana Carandini ◽  
Giorgio Giulio Fumagalli ◽  
Anna Margherita Pietroboni ◽  
Valeria Elisa Contarino ◽  
...  

Background: Association between cerebrospinal fluid (CSF)-amyloid-β (Aβ)42 and amyloid-PET measures is inconstant across the Alzheimer’s disease (AD) spectrum. However, they are considered interchangeable, along with Aβ 42/40 ratio, for defining ‘Alzheimer’s Disease pathologic change’ (A+). Objective: Herein, we further characterized the association between amyloid-PET and CSF biomarkers and tested their agreement in a cohort of AD spectrum patients. Methods: We include ed 23 patients who underwent amyloid-PET, MRI, and CSF analysis showing reduced levels of Aβ 42 within a 365-days interval. Thresholds used for dichotomization were: Aβ 42 <  640 pg/mL (Aβ 42+); pTau >  61 pg/mL (pTau+); and Aβ 42/40 <  0.069 (ADratio+). Amyloid-PET scans were visually assessed and processed by four pipelines (SPMCL, SPMAAL, FSGM, FSWC). Results: Different pipelines gave highly inter-correlated standardized uptake value ratios (SUVRs) (rho = 0.93–0.99). The most significant findings were: pTau positive correlation with SPMCL SUVR (rho = 0.56, p = 0.0063) and Aβ 42/40 negative correlation with SPMCL and SPMAAL SUVRs (rho = –0.56, p = 0.0058; rho = –0.52, p = 0.0117 respectively). No correlations between CSF-Aβ 42 and global SUVRs were observed. In subregion analysis, both pTau and Aβ 42/40 values significantly correlated with cingulate SUVRs from any pipeline (R2 = 0.55–0.59, p <  0.0083), with the strongest associations observed for the posterior/isthmus cingulate areas. However, only associations observed for Aβ 42/40 ratio were still significant in linear regression models. Moreover, combining pTau with Aβ 42 or using Aβ 42/40, instead of Aβ 42 alone, increased concordance with amyloid-PET status from 74% to 91% based on visual reads and from 78% to 96% based on Centiloids. Conclusion: We confirmed that, in the AD spectrum, amyloid-PET measures show a stronger association and a better agreement with CSF-Aβ 42/40 and secondarily pTau rather than Aβ 42 levels.

2021 ◽  
pp. 1-11
Author(s):  
Lucas M. Walden ◽  
Song Hu ◽  
Anant Madabhushi ◽  
Jeffrey W. Prescott ◽  

Background: Histopathologic studies have demonstrated differential amyloid-β (Aβ) burden between cortical sulci and gyri in Alzheimer’s disease (AD), with sulci having a greater Aβ burden. Objective: To characterize Aβ deposition in the sulci and gyri of the cerebral cortex in vivo among subjects with normal cognition (NC), mild cognitive impairment (MCI), and AD, and to evaluate if these differences could improve discrimination between diagnostic groups. Methods: T1-weighted 3T MR and florbetapir (amyloid) positron emission tomography (PET) data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). T1 images were segmented and the cortex was separated into sulci/gyri based on pial surface curvature measurements. T1 images were registered to PET images and regional standardized uptake value ratios (SUVr) were calculated. A linear mixed effects model was used to analyze the relationship between clinical variables and amyloid PET SUVr measurements in the sulci/gyri. Receiver operating characteristic (ROC) analysis was performed to define amyloid positivity. Logistic models were used to evaluate predictive performance of clinical diagnosis using amyloid PET SUVr measurements in sulci/gyri. Results: 719 subjects were included: 272 NC, 315 MCI, and 132 AD. Gyral and sulcal Aβ increased with worsening cognition, however there was a greater increase in gyral Aβ. Females had a greater gyral and sulcal Aβ burden. Focusing on sulcal and gyral Aβ did not improve predictive power for diagnostic groups. Conclusion: While there were significant differences in Aβ deposition in cerebral sulci and gyri across the AD spectrum, these differences did not translate into improved prediction of diagnosis. Females were found to have greater gyral and sulcal Aβ burden.


2021 ◽  
pp. 1-13
Author(s):  
Jonathan D. Drake ◽  
Alison B. Chambers ◽  
Brian R. Ott ◽  
Lori A. Daiello ◽  

Background: Cerebrovascular dysfunction confers risk for functional decline in Alzheimer’s disease (AD), yet the clinical interplay of these two pathogenic processes is not well understood. Objective: We utilized Alzheimer’s Disease Neuroimaging Initiative (ADNI) data to examine associations between peripherally derived soluble cell adhesion molecules (CAMs) and clinical diagnostic indicators of AD. Methods: Using generalized linear regression models, we examined cross-sectional relationships of soluble plasma vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-Selectin to baseline diagnosis and functional impairment (clinical dementia rating sum-of-boxes, CDR-SB) in the ADNI cohort (n = 112 AD, n = 396 mild cognitive impairment (MCI), n = 58 cognitively normal). We further analyzed associations of these biomarkers with brain-based AD biomarkers in a subset with available cerebrospinal fluid (CSF) data (n = 351). p-values derived from main effects and interaction terms from the linear regressions were used to assess the relationship between independent and dependent variables for significance (significance level was set at 0.05 a priori for all analysis). Results: Higher mean VCAM-1 (p = 0.0026) and ICAM-1 (p = 0.0189) levels were found in AD versus MCI groups; however, not in MCI versus cognitively normal groups. Only VCAM-1 was linked with CDR-SB scores (p = 0.0157), and APOE ɛ4 genotype modified this effect. We observed independent, additive associations when VCAM-1 and CSF amyloid-β (Aβ 42), total tau, phosphorylated tau (P-tau), or P-tau/Aβ 42 (all <  p = 0.01) were combined in a CDR-SB model; ICAM-1 showed a similar pattern, but to a lesser extent. Conclusion: Our findings indicate independent associations of plasma-based vascular biomarkers and CSF biomarkers with AD-related clinical impairment.


2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


2015 ◽  
Vol 36 (3) ◽  
pp. 621-628 ◽  
Author(s):  
Sara Shams ◽  
Tobias Granberg ◽  
Juha Martola ◽  
Xiaozhen Li ◽  
Mana Shams ◽  
...  

Cerebral microbleeds (CMBs) are hypothesised to have an important yet unknown role in the dementia disease pathology. In this study we analysed increasing number of CMBs and their independent associations with routine cerebrospinal fluid (CSF) biomarkers in a continuum of cognitive impairment. A total of 1039 patients undergoing dementia investigation were analysed and underwent lumbar puncture, and an MRI scan. CSF samples were analysed for amyloid β (Aβ) 42, total tau (T-tau), tau phosphorylated at threonine 18 (P-tau) and CSF/serum albumin ratios. Increasing number of CMBs were independently associated with low Aβ42 levels, in the whole cohort, Alzheimer’s disease and mild cognitive impairment ( p < 0.05). CSF/serum albumin ratios were high with multiple CMBs ( p < 0.001), reflecting accompanying blood–brain barrier dysfunction. T-tau and P-tau levels were lower in Alzheimer’s patients with multiple CMBs when compared to zero CMBs, but did not change in the rest of the cohort. White matter hyperintensities were associated with low Aβ42 in the whole cohort and Alzheimer’s disease ( p < 0.05). Aβ42 is the routine CSF-biomarker mainly associated with CMBs in cognitive impairment, and there is an accumulative effect with increasing number of CMBs.


2021 ◽  
Vol 39 (3) ◽  
pp. 214-218
Author(s):  
Min Hye Kim ◽  
Joonho Lee ◽  
Hong Nam Kim ◽  
In Ja Shin ◽  
Keun Lee ◽  
...  

We report a 61-year-old woman with clinical course for Alzheimer’s disease (AD) dementia and discordant amyloid-β positron-emission tomography (PET) and cerebrospinal fluid biomarkers. Brain magnetic resonance imaging revealed remarkable atrophy in the hippocampus. However, repeated delayed <sup>18</sup>F-flutemetamol brain amyloid PET images with 1 year-interval revealed no amyloid deposition, whereas her CSF revealed low Aβ42, high total tau and p-tau181. This discordant amyloid-β PET and CSF biomarkers in this early-onset AD dementia might be associated with her low resilience or mixed pathology.


2020 ◽  
pp. 1-12
Author(s):  
Yusuke Seino ◽  
Takumi Nakamura ◽  
Tomoo Harada ◽  
Naoko Nakahata ◽  
Takeshi Kawarabayashi ◽  
...  

Background: High sensitivity liquid chromatography mass spectrometry (LC-MS/MS) was recently introduced to measure amyloid-β (Aβ) species, allowing for a simultaneous assay that is superior to ELISA, which requires more assay steps with multiple antibodies. Objective: We validated the Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 assay by LC-MS/MS and compared it with ELISA using cerebrospinal fluid (CSF) samples to investigate its feasibility for clinical application. Methods: CSF samples from 120 subjects [8 Alzheimer’s disease (AD) with dementia (ADD), 2 mild cognitive dementia due to Alzheimer’s disease (ADMCI), 14 cognitively unimpaired (CU), and 96 neurological disease subjects] were analyzed. Aβ species were separated using the Shimadzu Nexera X2 system and quantitated using a Qtrap 5500 LC-MS/MS system. Aβ1-40 and Aβ1-42 levels were validated using ELISA. Results: CSF levels in CU were 666±249 pmol/L in Aβ1-38, 2199±725 pmol/L in Aβ1-40, 153.7±79.7 pmol/L in Aβ1-42, and 9.78±4.58 pmol/L in Aβ1-43. The ratio of the amounts of Aβ1-38, Aβ1-40, Aβ1-42, and Aβ1-43 was approximately 68:225:16:1. Linear regression analyses showed correlations among the respective Aβ species. Both Aβ1-40 and Aβ1-42 values were strongly correlated with ELISA measurements. No significant differences were observed in Aβ1-38 or Aβ1-40 levels between AD and CU. Aβ1-42 and Aβ1-43 levels were significantly lower, whereas the Aβ1-38/1-42, Aβ1-38/1-43, and Aβ1-40/Aβ1-43 ratios were significantly higher in AD than in CU. The basic assay profiles of the respective Aβ species were adequate for clinical usage. Conclusion: A quantitative LC-MS/MS assay of CSF Aβ species is as reliable as specific ELISA for clinical evaluation of CSF biomarkers for AD.


2021 ◽  
pp. 1-14
Author(s):  
Christiana Bjorkli ◽  
Claire Louet ◽  
Trude Helen Flo ◽  
Mary Hemler ◽  
Axel Sandvig ◽  
...  

Background: Preclinical models of Alzheimer’s disease (AD) can provide valuable insights into the onset and progression of the disease, such as changes in concentrations of amyloid-β (Aβ) and tau in cerebrospinal fluid (CSF). However, such models are currently underutilized due to limited advancement in techniques that allow for longitudinal CSF monitoring. Objective: An elegant way to understand the biochemical environment in the diseased brain is intracerebral microdialysis, a method that has until now been limited to short-term observations, or snapshots, of the brain microenvironment. Here we draw upon patient-based findings to characterize CSF biomarkers in a commonly used preclinical mouse model for AD. Methods: Our modified push-pull microdialysis method was first validated ex vivo with human CSF samples, and then in vivo in an AD mouse model, permitting assessment of dynamic changes of CSF Aβ and tau and allowing for better translational understanding of CSF biomarkers. Results: We demonstrate that CSF biomarker changes in preclinical models capture what is observed in the brain; with a decrease in CSF Aβ observed when plaques are deposited, and an increase in CSF tau once tau pathology is present in the brain parenchyma. We found that a high molecular weight cut-off membrane allowed for simultaneous sampling of Aβ and tau, comparable to CSF collection by lumbar puncture in patients. Conclusion: Our approach can further advance AD and other neurodegenerative research by following evolving neuropathology along the disease cascade via consecutive sampling from the same animal and can additionally be used to administer pharmaceutical compounds and assess their efficacy (Bjorkli, unpublished data).


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria João Leitão ◽  
Anuschka Silva-Spínola ◽  
Isabel Santana ◽  
Veronica Olmedo ◽  
Alicia Nadal ◽  
...  

Abstract Background Ongoing efforts within the Alzheimer’s disease (AD) field have focused on improving the intra- and inter-laboratory variability for cerebrospinal fluid (CSF) biomarkers. Fully automated assays offer the possibility to eliminate sample manipulation steps and are expected to contribute to this improvement. Recently, fully automated chemiluminescence enzyme immunoassays for the quantification of all four AD biomarkers in CSF became available. The aims of this study were to (i) evaluate the analytical performance of the Lumipulse G β-Amyloid 1-42 (restandardized to Certified Reference Materials), β-Amyloid 1-40, total Tau, and pTau 181 assays on the fully automated LUMIPULSE G600II; (ii) compare CSF biomarker results of the Lumipulse G assays with the established manual ELISA assays (INNOTEST®) from the same company (Fujirebio); and (iii) establish cut-off values and the clinical performance of the Lumipulse G assays for AD diagnosis. Methods Intra- and inter-assay variation was assessed in CSF samples with low, medium, and high concentrations of each parameter. Method comparison and clinical evaluation were performed on 40 neurological controls (NC) and 80 patients with a diagnosis of probable AD supported by a follow-up ≥ 3 years and/or positive amyloid PET imaging. A small validation cohort of 10 NC and 20 AD patients was also included to validate the cut-off values obtained on the training cohort. Results The maximal observed intra-assay and inter-assay coefficients of variation (CVs) were 3.25% and 5.50%, respectively. Method comparisons revealed correlation coefficients ranging from 0.89 (for Aβ40) to 0.98 (for t-Tau), with those for Aβ42 (0.93) and p-Tau (0.94) in-between. ROC curve analysis showed area under the curve values consistently above 0.85 for individual biomarkers other than Aβ40, and with the Aβ42/40, Aβ42/t-Tau, and Aβ42/p-Tau ratios outperforming Aβ42. Validation of the cut-off values in the independent cohort showed a sensitivity ranging from 75 to 95% and a specificity of 100%. The overall percentage of agreement between Lumipulse and INNOTEST was very high (> 87.5%). Conclusions The Lumipulse G assays show a very good analytical performance that makes them well-suited for CSF clinical routine measurements. The good clinical concordance between the Lumipulse G and INNOTEST assays facilitates the implementation of the new method in routine practice.


2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Giulia Giacomucci ◽  
Salvatore Mazzeo ◽  
Silvia Bagnoli ◽  
Matteo Casini ◽  
Sonia Padiglioni ◽  
...  

Background: The aims of this study were to compare the diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of different cerebrospinal fluid (CSF) amyloid biomarkers and amyloid-Positron Emission Tomography (PET) in patients with a clinical diagnosis of Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD); to compare concordance between biomarkers; and to provide an indication of their use and interpretation. Methods: We included 148 patients (95 AD and 53 FTD), who underwent clinical evaluation, neuropsychological assessment, and at least one amyloid biomarker (CSF analysis or amyloid-PET). Thirty-six patients underwent both analyses. One-hundred-thirteen patients underwent Apolipoprotein E (ApoE) genotyping. Results: Amyloid-PET presented higher diagnostic accuracy, sensitivity, and NPV than CSF Aβ1–42 but not Aβ42/40 ratio. Concordance between CSF biomarkers and amyloid-PET was higher in FTD patients compared to AD cases. None of the AD patients presented both negative Aβ biomarkers. Conclusions: CSF Aβ42/40 ratio significantly increased the diagnostic accuracy of CSF biomarkers. On the basis of our current and previous data, we suggest a flowchart to guide the use of biomarkers according to clinical suspicion: due to the high PPV of both amyloid-PET and CSF analysis including Aβ42/40, in cases of concordance between at least one biomarker and clinical diagnosis, performance of the other analysis could be avoided. A combination of both biomarkers should be performed to better characterize unclear cases. If the two amyloid biomarkers are both negative, an underlying AD pathology can most probably be excluded.


2020 ◽  
Author(s):  
Jongmin Lee ◽  
Hyemin Jang ◽  
Sung Hoon Kang ◽  
Jaeho Kim ◽  
Ji-Sun Kim ◽  
...  

Abstract Background Cerebrospinal fluid (CSF) biomarkers are increasingly used in clinical practice for the diagnosis of Alzheimer’s disease (AD). We aimed to 1) determine cutoff values of CSF biomarkers for AD, 2) investigate their clinical utility by estimating a concordance with amyloid positron emission tomography (PET), and 3) apply AT (amyloid/tau) classification based on CSF results. Methods We performed CSF analysis in 51 normal controls (NC), 23 amnestic mild cognitive impairment (aMCI) and 65 AD dementia (ADD) patients at the Samsung Medical Center in Korea. We tried to develop cutoff of CSF biomarkers for differentiating ADD from NC using receiver operating characteristic analysis. We also investigated a concordance between CSF and amyloid PET results and applied AT classification scheme based on CSF biomarker abnormalities to characterize our participants. Results CSF Aβ42, total tau (t-tau) and phosphorylated tau (p-tau) significantly differ across the three groups. The area under curve for the differentiation between NC and ADD was highest in t-tau/Aβ42(0.994) followed by p-tau/Aβ42(0.963), Aβ42(0.960) and t-tau (0.918). The concordance rate between CSF Aβ42 and amyloid PET results was 92%. Finally, AT classification based on CSF biomarker abnormalities led to a majority of NC categorized into A-T-(72%), aMCI as A + T-(52%)/A + T+(30%), and AD as A + T+(56%)/A + T-(41%). Conclusion CSF biomarkers had high sensitivity and specificity in differentiating ADD from NC and were as accurate as amyloid PET. The AT group distribution was comparable to those of previous studies, which may serve to predict the prognosis more accurately than amyloid PET alone in the future.


Sign in / Sign up

Export Citation Format

Share Document