Design of filter coefficients for optimal factored truncated cascade FIR filter using optimization algorithm

2021 ◽  
pp. 1-18
Author(s):  
K. Srivatsan

Signal filtering acts as one of the basic requirement of communication networks for the removal of unwanted features from the signal. The design of appropriate digital filter requires the selection of optimal filter coefficients for the generation of desired frequency response with reduced hardware complexity. This paper proposes a hybrid optimization algorithm named as Brain Storm- Grey Wolf Optimizer (BSGWO) algorithm for the selection of filter coefficients in the design of factored truncated cascade FIR filter. The proposed algorithm is the hybridization of the optimization algorithms, namely Brain Storm Optimization (BSO) and Grey Wolf Optimizer (GWO). The input signal is interpolated initially for the formation of an intermediate signal using the FIR filter. Then, the factored truncated cascade filter is developed for the interpolation of the signal. After designing the filter coefficients, the optimal selection of the filter coefficients is performed using the proposed BSGWO algorithm. The original filter is developed with the use of the least square estimation and the new filter is developed using the proposed algorithm that tunes the filter coefficients. The performance of the proposed system is analyzed using the metrics, such as fitness, Mean Absolute Error (MAE), magnitude, and the number of components. The proposed method produces minimum fitness, MAE, magnitude and number of components of 0.05, 0.0155, − 96.0  dB and 3372, respectively that shows the effectiveness of the proposed method.

2021 ◽  
pp. 107754632110034
Author(s):  
Ololade O Obadina ◽  
Mohamed A Thaha ◽  
Kaspar Althoefer ◽  
Mohammad H Shaheed

This article presents a novel hybrid algorithm based on the grey-wolf optimizer and whale optimization algorithm, referred here as grey-wolf optimizer–whale optimization algorithm, for the dynamic parametric modelling of a four degree-of-freedom master–slave robot manipulator system. The first part of this work consists of testing the feasibility of the grey-wolf optimizer–whale optimization algorithm by comparing its performance with a grey-wolf optimizer, whale optimization algorithm and particle swarm optimization using 10 benchmark functions. The grey-wolf optimizer–whale optimization algorithm is then used for the model identification of an experimental master–slave robot manipulator system using the autoregressive moving average with exogenous inputs model structure. Obtained results demonstrate that the hybrid algorithm is effective and can be a suitable substitute to solve the parameter identification problem of robot models.


2019 ◽  
Vol 9 (18) ◽  
pp. 3755 ◽  
Author(s):  
Wei Chen ◽  
Haoyuan Hong ◽  
Mahdi Panahi ◽  
Himan Shahabi ◽  
Yi Wang ◽  
...  

The most dangerous landslide disasters always cause serious economic losses and human deaths. The contribution of this work is to present an integrated landslide modelling framework, in which an adaptive neuro-fuzzy inference system (ANFIS) is combined with the two optimization algorithms of whale optimization algorithm (WOA) and grey wolf optimizer (GWO) at Anyuan County, China. It means that WOA and GWO are used as two meta-heuristic algorithms to improve the prediction performance of the ANFIS-based methods. In addition, the step-wise weight assessment ratio analysis (SWARA) method is used to obtain the initial weight of each class of landslide influencing factors. To validate the effectiveness of the proposed framework, 315 landslide events in history were selected for our experiments and were randomly divided into the training and verification sets. To perform landslide susceptibility mapping, fifteen geological, hydrological, geomorphological, land cover, and other factors are considered for the modelling construction. The landslide susceptibility maps by SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-WOA, and SWARA-ANFIS-GWO models are assessed using the measures of the receiver operating characteristic (ROC) curve and root-mean-square error (RMSE). The experiments demonstrated that the obtained results of modelling process from the SWARA to the SAWRA-ANFIS-GWO model were more accurate and that the proposed methods have satisfactory prediction ability. Specifically, prediction accuracy by area under the curve (AUC) of SWARA, SWARA-ANFIS, SWARA-ANFIS-PSO, SWARA-ANFIS-GWO, and SWARA-ANFIS-WOA models were 0.831, 0.831, 0.850, 0.856, and 0.869, respectively. Due to adaptability and usability, the proposed prediction methods can be applied to other areas for landslide management and mitigation as well as prevention throughout the world.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1192
Author(s):  
Randall Claywell ◽  
Laszlo Nadai ◽  
Imre Felde ◽  
Sina Ardabili ◽  
Amirhosein Mosavi

The accurate prediction of the solar diffuse fraction (DF), sometimes called the diffuse ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse irradiance research is discussed and then three robust, machine learning (ML) models are examined using a large dataset (almost eight years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid adaptive network-based fuzzy inference system (ANFIS), a single multi-layer perceptron (MLP) and a hybrid multi-layer perceptron grey wolf optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various solar and DF irradiance data, from Spain. The results were then evaluated using frequently used evaluation criteria, the mean absolute error (MAE), mean error (ME) and the root mean square error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance in both the training and the testing procedures.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4170 ◽  
Author(s):  
Bing Zeng ◽  
Jiang Guo ◽  
Wenqiang Zhu ◽  
Zhihuai Xiao ◽  
Fang Yuan ◽  
...  

Dissolved gas analysis (DGA) is a widely used method for transformer internal fault diagnosis. However, the traditional DGA technology, including Key Gas method, Dornenburg ratio method, Rogers ratio method, International Electrotechnical Commission (IEC) three-ratio method, and Duval triangle method, etc., suffers from shortcomings such as coding deficiencies, excessive coding boundaries and critical value criterion defects, which affect the reliability of fault analysis. Grey wolf optimizer (GWO) is a novel swarm intelligence optimization algorithm proposed in 2014 and it is easy for the original GWO to fall into the local optimum. This paper presents a new meta-heuristic method by hybridizing GWO with differential evolution (DE) to avoid the local optimum, improve the diversity of the population and meanwhile make an appropriate compromise between exploration and exploitation. A fault diagnosis model of hybrid grey wolf optimized least square support vector machine (HGWO-LSSVM) is proposed and applied to transformer fault diagnosis with the optimal hybrid DGA feature set selected as the input of the model. The kernel principal component analysis (KPCA) is used for feature extraction, which can decrease the training time of the model. The proposed method shows high accuracy of fault diagnosis by comparing with traditional DGA methods, least square support vector machine (LSSVM), GWO-LSSVM, particle swarm optimization (PSO)-LSSVM and genetic algorithm (GA)-LSSVM. It also shows good fitness and fast convergence rate. Accuracies calculated in this paper, however, are significantly affected by the misidentifications of faults that have been made in the DGA data collected from the literature.


2018 ◽  
Vol 12 (7) ◽  
pp. 73 ◽  
Author(s):  
Esra F. Alzaghoul ◽  
Sandi N. Fakhouri

Grey wolf Optimizer (GWO) is one of the well known meta-heuristic algorithm for determining the minimum value among a set of values. In this paper, we proposed a novel optimization algorithm called collaborative strategy for grey wolf optimizer (CSGWO). This algorithm enhances the behaviour of GWO that enhances the search feature to search for more points in the search space, whereas more groups will search for the global minimal points. The algorithm has been tested on 23 well-known benchmark functions and the results are verified by comparing them with state of the art algorithms: Polar particle swarm optimizer, sine cosine Algorithm (SCA), multi-verse optimizer (MVO), supernova optimizer as well as particle swarm optimizer (PSO). The results show that the proposed algorithm enhanced GWO behaviour for reaching the best solution and showed competitive results that outperformed the compared meta-heuristics over the tested benchmarked functions.


2021 ◽  
Vol 11 (2) ◽  
pp. 59-73
Author(s):  
A.V. Panteleev ◽  
I.A. Belyakov

This article discusses the development of software that allows to simulate the algorithm of the “Grey Wolf Optimizer” method. This algorithm belongs to the class of metaheuristic algorithms that allow finding a global extremum on a set of admissible solutions. This algorithm is being the most efficiently used in a situation where the cost function is specified in the form of a black box. The algorithm belongs to both bioinspired algorithms and to the class of algorithms of Particle Swarm Optimization. To analyze the efficiency of the algorithm, software was created that allows to vary the parameters of the method. The article contains examples of the program’s work on various test functions. The purpose of the program is to collect and analyze statistical results, making possible to evaluate the final result. The program provides to build graphs that make it possible to make a more thorough assessment of the results obtained. The program has a step-by-step function that allows one to analyze the specifics and features of the algorithm. Analysis of statistical data provides more detailed selection of the parameters of the algorithm.


Author(s):  
Randall Claywell ◽  
Nadai Laszlo ◽  
Felde Imre ◽  
Amir Mosavi

The accurate prediction of the solar Diffuse Fraction (DF), sometimes called the Diffuse Ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse Irradiance research is discussed and then three robust, Machine Learning (ML) models, are examined using a large dataset (almost 8 years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid Adaptive Network-based Fuzzy Inference System (ANFIS), a single Multi-Layer Perceptron (MLP) and a hybrid Multi-Layer Perceptron-Grey Wolf Optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various Solar and Diffuse Fraction (DF) irradiance data, from Spain. The results were then evaluated using two frequently used evaluation criteria, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance, in both the training and the testing procedures.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4756
Author(s):  
Bilal Naji Alhasnawi ◽  
Basil H. Jasim ◽  
Zain-Aldeen S. A. Rahman ◽  
Pierluigi Siano

In residential energy management (REM), Time of Use (ToU) of devices scheduling based on user-defined preferences is an essential task performed by the home energy management controller. This paper devised a robust REM technique capable of monitoring and controlling residential loads within a smart home. In this paper, a new distributed multi-agent framework based on the cloud layer computing architecture is developed for real-time microgrid economic dispatch and monitoring. In this paper the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm-based Time of Use (ToU) pricing model is proposed to define the rates for shoulder-peak and on-peak hours. The results illustrate the effectiveness of the proposed the grey wolf optimizer (GWO), artificial bee colony (ABC) optimization algorithm based ToU pricing scheme. A Raspberry Pi3 based model of a well-known test grid topology is modified to support real-time communication with open-source IoE platform Node-Red used for cloud computing. Two levels communication system connects microgrid system, implemented in Raspberry Pi3, to cloud server. The local communication level utilizes IP/TCP and MQTT is used as a protocol for global communication level. The results demonstrate and validate the effectiveness of the proposed technique, as well as the capability to track the changes of load with the interactions in real-time and the fast convergence rate.


Sign in / Sign up

Export Citation Format

Share Document