Diagnosis of colorectal cancer based on imperialist competitive algorithm

2020 ◽  
Vol 39 (4) ◽  
pp. 5359-5368
Author(s):  
B Ratna Raju ◽  
G.N Swamy ◽  
K. Padma Raju

The Colorectal cancer leads to more number of death in recent years. The diagnosis of Colorectal cancer as early is safe to treat the patient. To identify and treat this type of cancer, Colonoscopy is applied commonly. The feature selection based methods are proposed which helps to choose the subset variables and to attain better prediction. An Imperialist Competitive Algorithm (ICA) is proposed which helps to select features in identification of colon cancer and its treatment. Also K-Nearest Neighbor (KNN) classifier is used to retain a minimal Euclidean distance between the feature of query vector and all the data in the nature of prototype training. Experimental results have proved that the proposed method is superior when compared to other methods in its metrics of performance. Better accuracy is achieved by the proposed method.

2012 ◽  
Vol 532-533 ◽  
pp. 1455-1459
Author(s):  
Xiang Dong Li ◽  
Han Jia ◽  
Li Huang

K Nearest Neighbor (kNN) is a commonly-used text categorization algorithm. Previous studies mainly focused on improvements of the algorithm by modifying feature selection and k value selection. This research investigates the possibility to use Jensen-Shannon Divergence as similarity measure in the kNN classifier, and compares the performance, in terms of classification accuracy. The experiment denotes that the kNN algorithm based on Jensen-Shannon Divergence outperforms that based on Cosine value, while the performance is also largely dependent on number of categories and number of documents in a category.


2019 ◽  
Vol 10 (3) ◽  
pp. 667-678 ◽  
Author(s):  
Jalil Nourmohammadi-Khiarak ◽  
Mohammad-Reza Feizi-Derakhshi ◽  
Khadijeh Behrouzi ◽  
Samaneh Mazaheri ◽  
Yashar Zamani-Harghalani ◽  
...  

AbstractThe number and size of medical databases are rapidly increasing, and the advanced models of data mining techniques could help physicians to make efficient and applicable decisions. The challenges of heart disease data include the feature selection, the number of the samples; imbalance of the samples, lack of magnitude for some features, etc. This study mainly focuses on the feature selection improvement and decreasing the numbers of the features. In this study, imperialist competitive algorithm with meta-heuristic approach is suggested in order to select prominent features of the heart disease. This algorithm can provide a more optimal response for feature selection toward genetic in compare with other optimization algorithms. Also, the K-nearest neighbor algorithm is used for the classification. Evaluation result shows that by using the proposed algorithm, the accuracy of feature selection technique has been improved.


2021 ◽  
Vol 25 (6) ◽  
pp. 1453-1471
Author(s):  
Chunhua Tang ◽  
Han Wang ◽  
Zhiwen Wang ◽  
Xiangkun Zeng ◽  
Huaran Yan ◽  
...  

Most density-based clustering algorithms have the problems of difficult parameter setting, high time complexity, poor noise recognition, and weak clustering for datasets with uneven density. To solve these problems, this paper proposes FOP-OPTICS algorithm (Finding of the Ordering Peaks Based on OPTICS), which is a substantial improvement of OPTICS (Ordering Points To Identify the Clustering Structure). The proposed algorithm finds the demarcation point (DP) from the Augmented Cluster-Ordering generated by OPTICS and uses the reachability-distance of DP as the radius of neighborhood eps of its corresponding cluster. It overcomes the weakness of most algorithms in clustering datasets with uneven densities. By computing the distance of the k-nearest neighbor of each point, it reduces the time complexity of OPTICS; by calculating density-mutation points within the clusters, it can efficiently recognize noise. The experimental results show that FOP-OPTICS has the lowest time complexity, and outperforms other algorithms in parameter setting and noise recognition.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


2015 ◽  
Vol 83 ◽  
pp. 81-91 ◽  
Author(s):  
Aiguo Wang ◽  
Ning An ◽  
Guilin Chen ◽  
Lian Li ◽  
Gil Alterovitz

Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


2020 ◽  
Author(s):  
aras Masood Ismael ◽  
Ömer F Alçin ◽  
Karmand H Abdalla ◽  
Abdulkadir k sengur

Abstract In this paper, a novel approach that is based on two-stepped majority voting is proposed for efficient EEG based emotion classification. Emotion recognition is important for human-machine interactions. Facial-features and body-gestures based approaches have been generally proposed for emotion recognition. Recently, EEG based approaches become more popular in emotion recognition. In the proposed approach, the raw EEG signals are initially low-pass filtered for noise removal and band-pass filters are used for rhythms extraction. For each rhythm, the best performed EEG channels are determined based on wavelet-based entropy features and fractal dimension based features. The k-nearest neighbor (KNN) classifier is used in classification. The best five EEG channels are used in majority voting for getting the final predictions for each EEG rhythm. In the second majority voting step, the predictions from all rhythms are used to get a final prediction. The DEAP dataset is used in experiments and classification accuracy, sensitivity and specificity are used for performance evaluation metrics. The experiments are carried out to classify the emotions into two binary classes such as high valence (HV) vs low valence (LV) and high arousal (HA) vs low arousal (LA). The experiments show that 86.3% HV vs LV discrimination accuracy and 85.0% HA vs LA discrimination accuracy is obtained. The obtained results are also compared with some of the existing methods. The comparisons show that the proposed method has potential in the use of EEG based emotion classification.


2010 ◽  
Vol 44-47 ◽  
pp. 1130-1134
Author(s):  
Sheng Li ◽  
Pei Lin Zhang ◽  
Bing Li

Feature selection is a key step in hydraulic system fault diagnosis. Some of the collected features are unrelated to classification model, and some are high correlated to other features. These features are harmful for establishing classification model. In order to solve this problem, genetic algorithm-partial least squares (GA-PLS) is proposed for selecting the representative and optimal features. K nearest neighbor algorithm (KNN) is used for diagnosing and classifying hydraulic system faults. For expressing better performance of GA-PLS, the original data of a model engineering hydraulic system is used, and the results of GA-PLS are compared with all feature used and GA. The experimental results show that, the proposed feature method can diagnose and classify hydraulic system faults more efficiently with using fewer features.


Sign in / Sign up

Export Citation Format

Share Document