Research on construction method and deformation control technology of high ground stress interbedded soft rock tunnel

Author(s):  
Zhichun Fang ◽  
Zhengguo Zhu ◽  
Xinyu Chen

The construction of tunnels is often long and deep buried tunnels, and the geological conditions are more complex. Based on Jianshan tunnel in Gansu Province, the special geological conditions such as high ground stress and weak interbedded surrounding rock make the excavation of tunnel easy to produce large deformation. In this article, the software finite difference software FLAC3D was used to establish numerical models and select the best construction method by comparing the deformation of the tunnel under different construction methods. Aiming at the deformation characteristics of soft rock tunnels in highland interbedded layers, the control measures of tunnel deformation are discussed. Mainly consider the two aspects of the bolt support plan and the second lining construction time, comprehensively compare the deformation characteristics of the tunnel, and select the best working condition. The research results show that the combination of three-step temporary invert method and three-step ultra short bench method is recommended for the tunnel construction; when the bench length is 4 m, the deformation control effect of the tunnel is the best; by improving the length and angle of the anchor rod, the deformation of the tunnel can also be well controlled.

2020 ◽  
Vol 10 (11) ◽  
pp. 3937
Author(s):  
Guang Li ◽  
Fengshan Ma ◽  
Jie Guo ◽  
Haijun Zhao

Deformation failure and support methods of roadways have always been critical issues in mining production and safety, especially for roadways buried in complex engineering geological conditions. To resolve these support issues of kilometer-depth roadways under high ground stress and broken rock mass, a case study on the roadways in the No. 2 mining area of Jinchuan Mine, China, is presented in this paper. Based on a detailed field survey, the deformation characteristics of the roadways and failure modes of supporting structures were investigated. It was found that the horizontal deformations were serious, and the primary support was not able to control the surrounding rock well. Additionally, a broken rock zone test was carried out, which indicated that a zonal disintegration phenomenon occurred around the roadways and the maximum depth of the fractured zone was more than 4.8 m. In order to effectively limit the deformation in the roadways, a new support scheme called the “multistage anchorage + concrete-filled steel tube” was put forward. To further assess the support behavior of the new method, we selected a test roadway in the research area, and numerical simulations and in-situ monitoring were conducted. The findings suggest that the roadway’s serious deformation under high ground stress and broken rock mass could be successfully controlled by the new control method, which can provide a reference for other engineering solutions under similar geological conditions.


Author(s):  
Xiaoming Sun ◽  
Bo Zhang ◽  
Yong Zhang ◽  
Xiaobing Qiao ◽  
Zhijiao Wang ◽  
...  

2014 ◽  
Vol 638-640 ◽  
pp. 794-797
Author(s):  
Fei Pan ◽  
Sheng Guo Cheng

With the development of transportation construction, soft rock tunnel with high geostress construction has become a key problem to overcome of traffic engineering construction. In order to explore the deformation mechanism and control technology of soft rock tunnel with high geostress, Xiakou tunnel engineering as an example, the geological characteristics and deformation characteristics of the tunnel were analyzed, to obtain the deformation mechanism of soft rock tunnels with high geostress, and to develop deformation control technology, the results provide a basis and reference for the domestic and foreign the similar engineering construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yongdong Wang ◽  
Haitao Jiang ◽  
Xin Yan ◽  
Huiru Liang ◽  
Guoan Li ◽  
...  

A carbonaceous mudstone tunnel is a type of soft rock tunnel. There is little research on the prevention and control measures for the deformation and failure of carbonaceous mudstone tunnels. In this article, we investigated the construction of the Qiguding carbonaceous mudstone tunnel in Meizhou City, Guangdong Province, China. We monitored and analyzed the deformation and stress characteristics of a section under the original support scheme. The monitoring data showed that this section had large peripheral convergence, vault subsidence, steel arch strain, and concrete strain. The deformations exhibited significant differences in the horizontal and vertical directions, eventually resulting in concrete cracking, steel arch bulging, and distortion in the section. The analysis showed that the primary mechanisms for the failure were the softening characteristics of the carbonaceous mudstone, the plastic rheology, and the shear slip of the rock stratum. Based on a comparative analysis and numerical simulation, we proposed a new support measure called the longitudinal rigid enlarged foundation that consists of a steel arch longitudinal connection system and a locking foot anchor pipe system. Several comparative tests were performed at the tunnel site. The results demonstrated the excellent performance and reliability of the proposed support scheme for the deformation control of the carbonaceous mudstone, providing a reference for similar projects.


2012 ◽  
Vol 594-597 ◽  
pp. 631-635 ◽  
Author(s):  
Wen Hua Zha ◽  
Xin Zhu Hua

To explore support technical problems in deep soft rock roadway, according to deep complicated geological conditions in 102 transport rise of Yuandian Mine, obtaining deformation characteristics of roadway in the initial support scheme under conditions, analysing the reasons of instability and failure of surrounding rock, proposing the surrounding rock control technology of step-by-step strengthen co-supporting, determining secondary anchor cable strengthen support time and grouting delay distance, optimizing the parameters of roadway support. Industrial practice show that the control effect of deformation was obvious,which provide the reference for deep soft rock tunnel support decision.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Qi Yanli ◽  
Wen Shaoquan ◽  
Bai Mingzhou ◽  
Shi Hai ◽  
Li Pengxiang ◽  
...  

In the process of tunnel construction, the bias of layered rock mass tunnels has always been a prominent problem that troubles the construction and safe operation of tunnels. In this paper, a comprehensive method that combines monitoring technology and discrete element (3DEC) numerical simulation is proposed to analyze the deformation characteristics of the surrounding rock in the layered rock tunnel and the deformation law of the bias tunnel. The results indicate that the tunnel surrounding rock deformation in the study area showed the characteristics of bias. Based on the bias mechanism, the surrounding rock deformation law, the construction deformation control, and the optimization measures of layered rock mass in the bias tunnel were studied by means of combining monitoring technology with discrete element (3DEC) numerical simulation. Based on the research results, appropriate methods for controlling the deformation of the surrounding rock of the tunnel with comprehensive consideration of the anchor rod length, anchor rod angle, and anchor rod layout spacing were proposed. The method proposed in this paper could visually reveal the deformation characteristics of the surrounding rock of layered rock tunnels and the deformation law of bias tunnels. It could also better solve the problem of deformation control in the tunnel construction process. This approach provides a novel idea for special layered rock mass tunnel bias evaluation and deformation control parameter optimization and serves as a valuable reference for analogous engineering cases through engineering case analysis.


Sign in / Sign up

Export Citation Format

Share Document