A novel 3-DOF translational parallel robot and its fuzzy controller design

2021 ◽  
pp. 1-14
Author(s):  
Tianxu Li ◽  
Mingde Gong ◽  
Kongming Hu ◽  
Lijuan Zhao ◽  
Baoqiang Zhao

In this paper, a novel three-degrees-of-freedom (3-DOF) parallel robot is designed, which can only move in three translational directions. It avoids the difficulty in the solution for forward kinematics of the parallel robot. The robot containing only lower pairs (P and R) has a simple mechanism. The characteristic that the parallel robot has only three translational degrees of freedom can be proved by the screw theory and the DOF can be got by the formula of calculating the DOF of space mechanism. The kinematics and workspace of the parallel robot is analyzed through calculation and simulation. In order to obtain better servo control performance, the PMSM fuzzy controller is designed. The analysis and simulation results show that the mechanism design of the parallel robot is reasonable, and the effect of fuzzy controller is better than the ordinary PID controller.

Author(s):  
Enrique Cuan-Urquizo ◽  
Ernesto Rodriguez-Leal ◽  
Jian S. Dai

This paper presents a novel parallel robot constructed with a three-limb CUP architecture. The mobility of the mechanism is obtained using screw theory, showing that the platform has three degrees of freedom, namely: (i) translation along the Z axis; and (ii) two rotations. The position analysis investigates the loop-closure equation resulting in a unique solution for the inverse kinematics problem and the identification of parasitic motions of the platform. The paper validates the analytical solution with a numerical example, where the results are compared with motion simulations of the manipulator using a commercially available software package.


2015 ◽  
Vol 7 (3) ◽  
Author(s):  
Hamed Khakpour ◽  
Lionel Birglen ◽  
Souheil-Antoine Tahan

In this paper, a new three degrees of freedom (DOF) differentially actuated cable parallel robot is proposed. This mechanism is driven by a prismatic actuator and three cable differentials. Through this design, the idea of using differentials in the structure of a spatial cable robot is investigated. Considering their particular properties, the kinematic analysis of the robot is presented. Then, two indices are defined to evaluate the workspaces of the robot. Using these indices, the robot is subsequently optimized. Finally, the performance of the optimized differentially driven robot is compared with fully actuated mechanisms. The results show that through a proper design methodology, the robot can have a larger workspace and better performance using differentials than the fully driven cable robots using the same number of actuators.


2013 ◽  
Vol 310 ◽  
pp. 518-523
Author(s):  
Zhi Qiang Chao ◽  
Xin Ze Li ◽  
Ai Hong Meng

In recent years, hydraulic simulation has become an important means to research hydraulic system, in order to enable the single degree platform vibration curve with better traceability and reach the requirement of the test, this paper represent single degree system platform stimulated by simulation software AMESim, taking the Single degree freedom vibration hydraulic system as an example, MATlab/simulink is applied to the design of the vibration platform system fuzzy PID controller. Through the comparison between the simulation test and traditional PID controller, the designed self-tuning fuzzy controller can control the platform better, with smaller overshoot, faster response, shorter adjusting time, as well as fulfill the permissible accuracy.


2018 ◽  
Vol 42 (2) ◽  
pp. 164-176 ◽  
Author(s):  
Wanqiang Xi ◽  
Bai Chen ◽  
Yaoyao Wang ◽  
Feng Ju

For the synthesis of the required type about the multi-robot coordination system in industrial transportation, this paper presents a novel method in which each robot in the coordinated task is viewed as a branched chain of an equivalent parallel robot (EPR), which is converted into a problem for type synthesis of parallel robots. A theoretic method is proposed to represent the kinematic features of the mechanism’s end-effector and its position and pose in the world coordinate system. The basic concept of a robotic characteristic (C) set is given, and the corresponding algorithm is analyzed. Based on the theory of C set, the concrete steps for type synthesis of EPR are presented by analyzing the characteristics of its branched chains, and many EPR groups with end kinematic features for the C sets of the operational tasks are obtained. Then three translational (3T) operational requirements that can be extended to other degrees of freedom (DOF) are adopted, and the DOF of homogeneous and heterogeneous EPR are analyzed using screw theory. Finally the validation of the method is demonstrated by Adams, which shows that the two groups are able to complete the task.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091995
Author(s):  
Shi Baoyu ◽  
Wu Hongtao

A new type of parallel robot ROBO_003 is presented. Its mechanisms, kinematics, and virtual prototype technology are introduced. The research of degrees of freedom (DOF) is based on screw theory, a set of screw is separated as a branch, which named as constrain screw. The type of three DOF gained by counting constrain screw, the moving platform’s frame, and base platform’s frame is set, respectively, a complete kinematic research including closed-form solutions for direct kinematic problem. The 3-D model of ROBO_003 is established using SOLIDWORKS; position and orientation of motion platform can be gained using ADMAS, which is a type of virtual prototype technology. The resultant shows that the structure of ROBO_003 is reasonable, three DOF of motion platform can be operated in a reasonable range, the solutions to the direct kinematics are right, and robot ROBO_003 can be used in many industrial fields. The research of this article provides a basis for the practical application of parallel robotics ROBO_003.


2013 ◽  
Vol 479-480 ◽  
pp. 934-937
Author(s):  
Jium Ming Lin ◽  
Cheng Hung Lin

This paper proposes a novel fuel cell system design by integrating both methods of Ziegler-Nichols-based PID control and the intelligent fuzzy control, thus the relative stability and disturbance rejection properties can be reserved. This new method is not proposed before for fuel cell control system design. By using PID method for the normal case of fuel cell current requirement, the overshoot of the temperature is 45%, the temperature rise and the settling times are 0.65 sec and 2 sec, respectively. However, by using intelligent fuzzy Ziegler-Nichols-based PID controller design, the overshoot of the temperature is 12%, the temperature rise and the settling times are 0.7 sec and 1 sec, respectively. Thus the proposed method is better. Moreover, this paper also takes the system disturbance variation effect into consideration, e.g. the current requirement is increased by 100% for climbing a slope or speed-up conditions; note a large 60% temperature overshoot is produced by using Ziegler-Nichols based PID controller. But the overshoot is only 20% by using the intelligent fuzzy Ziegler-Nichols-based PID controller. Thus the proposed system is more robust.


Author(s):  
P. Sathishkumar ◽  
J. Jancirani ◽  
D. John ◽  
B. Arun

This article discusses methods to reduce the acceleration of a vehicle and increase its road holding ability. In the simulation using quarter car model, electric actuator and air spring based actuator are used as the main control elements. A three degrees of freedom system model is used in which the parameters for the tire, vehicle body and seat are considered. The required actuator force is calculated by a standard fuzzy controller. For analysing the performance of active suspension system, body acceleration and velocity are given as inputs to the controller according to ISO specified standards. Accelerations of the seat and vehicle body are used to judge the performance of the system.


2011 ◽  
Vol 383-390 ◽  
pp. 7345-7350
Author(s):  
Zhi Yong Tang ◽  
Hai Xiao Zhong ◽  
Zhong Cai Pei ◽  
Yan Hao Bu

In this paper, we propose a mechanical structure for multi-legged robot. Referring the request of control system, we also made a proper choice on driving means. After dynamics analysis on a single leg of the robot, we make a simulation using ADAMS and get how the torque of each joint is changing when the robot is walking. The model of DC motor is established for the control system. Fuzzy PID controller was used to get real-time response and high accuracy of control system.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Sen Qian ◽  
Kunlong Bao ◽  
Bin Zi ◽  
W. D. Zhu

Abstract This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.


Sign in / Sign up

Export Citation Format

Share Document