Fuzzy classification of OpenCL programs targeting heterogeneous systems

2020 ◽  
Vol 39 (5) ◽  
pp. 7189-7202
Author(s):  
Ahmad Al-Zoubi ◽  
Konstantinos Tatas ◽  
Costas Kyriacou

Heterogeneous systems featuring multiple kinds of processors are becoming increasingly attractive due to their high performance and energy savings over their homogeneous counterparts. With the OpenCL as a unified programming language providing program portability across different types of accelerators, finding the best task-to-device mapping will be the key to achieve such a high performance. We introduce in this work the design of a fuzzy logic classifier and the evaluation of its performance in classifying OpenCL workloads in a CPU-GPU-FPGA heterogeneous environment based on carefully analyzed kernel features. The classifier is designed as part of a scheduling scheme. Results demonstrate substantial improvement in accuracy when compared to other classifiers such as the K-Nearest- Neighbor (KNN), Support-Vector-Machine (SVM), Random-Forest (RF), Naïve-Bayes (NB) and the Bayes-Network (BN) with low computational complexity, facilitating run-time operation.

Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1870
Author(s):  
Yaghoub Pourasad ◽  
Esmaeil Zarouri ◽  
Mohammad Salemizadeh Parizi ◽  
Amin Salih Mohammed

Breast cancer is one of the main causes of death among women worldwide. Early detection of this disease helps reduce the number of premature deaths. This research aims to design a method for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six techniques have been performed to detect and segment ultrasound images. Features of images are extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose breast cancer from ultrasound images. The second presented CNN model can identify the original location of the tumor. The results show 92% of the images in the high-performance region with an AUC above 0.6. The proposed model can identify the tumor’s location and volume by morphological operations as a post-processing algorithm. These findings can also be used to monitor patients and prevent the growth of the infected area.


2021 ◽  
Vol 11 (11) ◽  
pp. 4783
Author(s):  
Jaeun Choi ◽  
Yongsung Kim

The over-the-top (OTT) market for media consumption over wired and wireless Internet is growing. It is, therefore, crucial that service providers and carriers participating in the OTT market analyze consumer traffic for pricing, service delivery, infrastructure investments, etc. The OTT market has many consumer groups, but the proportion of users is not consistent in each. Furthermore, as multimedia consumption has increased owing to the COVID-19 epidemic, the OTT market has changed rapidly. If this is not reflected, the analysis will not be accurate. Therefore, we propose a framework that can classify consumers well based on actual OTT market environment conditions. First, by applying our proposed conditional probability-based method to basic machine learning techniques, such as support vector machine, k-nearest neighbor, and decision tree, we can improve the classification performance, even for an imbalanced OTT consumer distribution. Then, it is possible to analyze the changing consumer trends by dynamically retraining the incoming OTT consumer data. Conventional methods result in low classification accuracy in low-number classes, but our method shows an improvement of 5.3–19.2% based on recall. Moreover, conventional methods have shown large fluctuations in performance as the OTT market environment has changed, but our framework consistently maintains high performance.


Author(s):  
Seyma Kiziltas Koc ◽  
Mustafa Yeniad

Technologies which are used in the healthcare industry are changing rapidly because the technology is evolving to improve people's lifestyles constantly. For instance, different technological devices are used for the diagnosis and treatment of diseases. It has been revealed that diagnosis of disease can be made by computer systems with developing technology.Machine learning algorithms are frequently used tools because of their high performance in the field of health as well as many field. The aim of this study is to investigate different machine learning classification algorithms that can be used in the diagnosis of diabetes and to make comparative analyzes according to the metrics in the literature. In the study, seven classification algorithms were used in the literature. These algorithms are Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision Trees, Support Vector Machine and Naive Bayes. Firstly, classification performance of algorithms are compared. These comparisons are based on accuracy, sensitivity, precision, and F1-score. The results obtained showed that support vector machine algorithm had the highest accuracy with 78.65%.


Author(s):  
MAYY M. AL-TAHRAWI ◽  
RAED ABU ZITAR

Many techniques and algorithms for automatic text categorization had been devised and proposed in the literature. However, there is still much space for researchers in this area to improve existing algorithms or come up with new techniques for text categorization (TC). Polynomial Networks (PNs) were never used before in TC. This can be attributed to the huge datasets used in TC, as well as the technique itself which has high computational demands. In this paper, we investigate and propose using PNs in TC. The proposed PN classifier has achieved a competitive classification performance in our experiments. More importantly, this high performance is achieved in one shot training (noniteratively) and using just 0.25%–0.5% of the corpora features. Experiments are conducted on the two benchmark datasets in TC: Reuters-21578 and the 20 Newsgroups. Five well-known classifiers are experimented on the same data and feature subsets: the state-of-the-art Support Vector Machines (SVM), Logistic Regression (LR), the k-nearest-neighbor (kNN), Naive Bayes (NB), and the Radial Basis Function (RBF) networks.


2021 ◽  
Author(s):  
Li Guochao ◽  
Zhigang Liu ◽  
Jie Lu ◽  
Honggen Zhou ◽  
Li Sun

Abstract Groove is a key structure of high-performance integral cutting tools. It has to be manufactured by 5-axis grinding machine due to its complex spatial geometry and hard materials. The crucial manufacturing parameters (CMP) are grinding wheel positions and geometries. However, it is a challenging problem to solve the CMP for the designed groove. The traditional trial-and-error or analytical methods have defects such as time-consuming, limited-applying and low accuracy. In this study, the problem is translated into a multiple output regression model of groove manufacture (MORGM) based on the big data technology and AI algorithms. The input are 34 groove geometry features and the output are 5 CMP. Firstly, two groove machining big data sets with different range are established, each of which is includes 46656 records. They are used as data resource for MORGM. Secondly, 7 AI algorithms, including linear regression, k nearest-neighbor regression, decision trees, random forest regression, support vector regression and ANN algorithms are discussed to build the model. Then, 28 experiments are carried out to test the big data set and algorithms. Finally, the best MORGM is built by ANN algorithm and the big data set with a larger range. The results show that CMP can be calculated accurately and conveniently by the built MORGM.


Author(s):  
Seyma Kiziltas Koc ◽  
Mustafa Yeniad

Technologies which are used in the healthcare industry are changing rapidly because the technology is evolving to improve people's lifestyles constantly. For instance, different technological devices are used for the diagnosis and treatment of diseases. It has been revealed that diagnosis of disease can be made by computer systems with developing technology.Machine learning algorithms are frequently used tools because of their high performance in the field of health as well as many field. The aim of this study is to investigate different machine learning classification algorithms that can be used in the diagnosis of diabetes and to make comparative analyzes according to the metrics in the literature. In the study, seven classification algorithms were used in the literature. These algorithms are Logistic Regression, K-Nearest Neighbor, Multilayer Perceptron, Random Forest, Decision Trees, Support Vector Machine and Naive Bayes. Firstly, classification performance of algorithms are compared. These comparisons are based on accuracy, sensitivity, precision, and F1-score. The results obtained showed that support vector machine algorithm had the highest accuracy with 78.65%.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Aaron Frederick Bulagang ◽  
James Mountstephens ◽  
Jason Teo

Abstract Background Emotion prediction is a method that recognizes the human emotion derived from the subject’s psychological data. The problem in question is the limited use of heart rate (HR) as the prediction feature through the use of common classifiers such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Random Forest (RF) in emotion prediction. This paper aims to investigate whether HR signals can be utilized to classify four-class emotions using the emotion model from Russell’s in a virtual reality (VR) environment using machine learning. Method An experiment was conducted using the Empatica E4 wristband to acquire the participant’s HR, a VR headset as the display device for participants to view the 360° emotional videos, and the Empatica E4 real-time application was used during the experiment to extract and process the participant's recorded heart rate. Findings For intra-subject classification, all three classifiers SVM, KNN, and RF achieved 100% as the highest accuracy while inter-subject classification achieved 46.7% for SVM, 42.9% for KNN and 43.3% for RF. Conclusion The results demonstrate the potential of SVM, KNN and RF classifiers to classify HR as a feature to be used in emotion prediction in four distinct emotion classes in a virtual reality environment. The potential applications include interactive gaming, affective entertainment, and VR health rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document