Solving fully dynamic bin packing problem for virtual machine allocation in the cloud environment by the futuristic greedy algorithm

2021 ◽  
pp. 1-24
Author(s):  
Ali Bakhthemmat ◽  
Mohammad Izadi

Many scientists apply fully dynamic bin packing problem solving for resource allocation of virtual machines in cloud environments. The goal of problem-solving is to reduce the number of allocated hosts (bins) and virtual machines (items) migration rates for reducing energy consumption. This study demonstrates a greedy futuristic algorithm (proposed algorithm) for fully dynamic bin packaging with an average asymptotic approximation ratio of 1.231, better than other existing algorithms. The proposed algorithm identifies inappropriate local selections using special futuristic conditions to prevent them as much as possible. Eventually, suitable choices determine and discard the improper ones. The proposed algorithm illustrates an asymptotic approximation ratio of (t/ (t-1)) OPT, where the value of t depends on the distribution of the arrived and departed items. Also, OPT is the number of bins by an optimal solution. Finally, in experiments of datasets using a maximum utilization of 80% of each bin, the average migration rate is 0.338. Using the proposed method for allocating resources in the cloud environment can allocate hosts to a virtual machine using almost optimal use. This allocation can reduce the cost of maintaining and purchasing hosts. Also, this method can reduce the migration rate of virtual machines. As a result, decreasing migration improves the energy consumption cost in the cloud environment.

2013 ◽  
Vol 760-762 ◽  
pp. 1906-1910
Author(s):  
Jun Wei Ge ◽  
Hai Ming Zheng ◽  
Yi Qiu Fang

As we all kown, The virtual machine placement is one kind of bin-packing problem. By optimizing placement of virtual machine. We can improve VM performance, enhance resource utilization, reduce energy comsumption. After analysis the existing virtual machine placement aglrithm. We propose a hybird virtual machine placement aglrithm (HTA) which based on network latency threshold for the requirement of low network latence and low VM migraiton ratio in Virtualized Desktop Infrastructure. It elect qualified node set based on network latency threshold and palce the virtual machines with load-balance policy, taking into account the preformance of the network and vitual machines. According to analysis and comparison. The simulation result show that the algorithm can effectively lessen the network latency and reduce the VM migration ratio.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


2014 ◽  
Vol 1046 ◽  
pp. 508-511
Author(s):  
Jian Rong Zhu ◽  
Yi Zhuang ◽  
Jing Li ◽  
Wei Zhu

How to reduce energy consumption while improving utility of datacenter is one of the key technologies in the cloud computing environment. In this paper, we use energy consumption and utility of data center as objective functions to set up a virtual machine scheduling model based on multi-objective optimization VMSA-MOP, and design a virtual machine scheduling algorithm based on NSGA-2 to solve the model. Experimental results show that compared with other virtual machine scheduling algorithms, our algorithm can obtain relatively optimal scheduling results.


Cloud service provider in cloud environment will provide or provision resource based on demand from the user. The cloud service provider (CSP) will provide resources as and when required or demanded by the user for execution of the job on the cloud environment. The CSP will perform this in a static and dynamic manner. The CSP should also consider various other factors in order to provide the resources to the user, the prime among that will be the Service Level Agreement (SLA), which is normally signed by the user and cloud service provider during the inception phase of service. There are many algorithm which are used in order to allocate resources to the user in cloud environment. The algorithm which is proposed will be used to reduce the amount of energy utilized in performing various job execution in cloud environment. Here the energy utilized for execution of various jobs are taken into account by increasing the number of virtual machines that are used on a single physical host system. There is no thumb rule to calculate the number of virtual machines to be executed on a single host. The same can be derived by calculating the amount of space, speed required along with the time to execute the job on a virtual machine. Based up on this we can derive the number of Virtual machine on a single host system. There can be 10 virtual machines on a single system or even 20 number of virtual machines on single physical system. But if the same is calculated by the equation then the result will be exactly matching with the threshold capacity of the physical system[1]. If more number of physical systems are used to execute fewer virtual machines on each then the amount of energy consumed will be very high. So in order to reduce the energy consumption , the algorithm can be used will not only will help to calculate the number of virtual machines on single physical system , but also will help to reduce the energy as less number of physical systems will be in need[2].


2014 ◽  
Vol 24 (3) ◽  
pp. 535-550 ◽  
Author(s):  
Jiaqi Zhao ◽  
Yousri Mhedheb ◽  
Jie Tao ◽  
Foued Jrad ◽  
Qinghuai Liu ◽  
...  

Abstract Scheduling virtual machines is a major research topic for cloud computing, because it directly influences the performance, the operation cost and the quality of services. A large cloud center is normally equipped with several hundred thousand physical machines. The mission of the scheduler is to select the best one to host a virtual machine. This is an NPhard global optimization problem with grand challenges for researchers. This work studies the Virtual Machine (VM) scheduling problem on the cloud. Our primary concern with VM scheduling is the energy consumption, because the largest part of a cloud center operation cost goes to the kilowatts used. We designed a scheduling algorithm that allocates an incoming virtual machine instance on the host machine, which results in the lowest energy consumption of the entire system. More specifically, we developed a new algorithm, called vision cognition, to solve the global optimization problem. This algorithm is inspired by the observation of how human eyes see directly the smallest/largest item without comparing them pairwisely. We theoretically proved that the algorithm works correctly and converges fast. Practically, we validated the novel algorithm, together with the scheduling concept, using a simulation approach. The adopted cloud simulator models different cloud infrastructures with various properties and detailed runtime information that can usually not be acquired from real clouds. The experimental results demonstrate the benefit of our approach in terms of reducing the cloud center energy consumption


Author(s):  
Oshin Sharma ◽  
Hemraj Saini

To increase the availability of the resources and simultaneously to reduce the energy consumption of data centers by providing a good level of the service are one of the major challenges in the cloud environment. With the increasing data centers and their size around the world, the focus of the current research is to save the consumption of energy inside data centers. Thus, this article presents an energy-efficient VM placement algorithm for the mapping of virtual machines over physical machines. The idea of the mapping of virtual machines over physical machines is to lessen the count of physical machines used inside the data center. In the proposed algorithm, the problem of VM placement is formulated using a non-dominated sorting genetic algorithm based multi-objective optimization. The objectives are: optimization of the energy consumption, reduction of the level of SLA violation and the minimization of the migration count.


2016 ◽  
Vol 5 (4) ◽  
pp. 165-191 ◽  
Author(s):  
Boominathan Perumal ◽  
Aramudhan M.

In cloud computing, the most important challenge is to enforce proper utilization of physical resources. To accomplish the mentioned challenge, the cloud providers need to take care of optimal mapping of virtual machines to a set of physical machines. In this paper, the authors address the mapping problem as a multi-objective virtual machine placement problem (VMP) and propose to apply multi-objective fuzzy ant colony optimization (F-ACO) technique for optimal placing of virtual machines in the physical servers. VMP-F-ACO is a combination of fuzzy logic and ACO, where we use fuzzy transition probability rule to simulate the behaviour of the ants and the authors apply the same for virtual machine placement problem. The results of fuzzy ACO techniques are compared with five variants of classical ACO, three bin packing heuristics and two evolutionary algorithms. The results show that the fuzzy ACO techniques are better than the other optimization and heuristic techniques considered.


2020 ◽  
Vol 10 (7) ◽  
pp. 2323
Author(s):  
T. Renugadevi ◽  
K. Geetha ◽  
K. Muthukumar ◽  
Zong Woo Geem

Drastic variations in high-performance computing workloads lead to the commencement of large number of datacenters. To revolutionize themselves as green datacenters, these data centers are assured to reduce their energy consumption without compromising the performance. The energy consumption of the processor is considered as an important metric for power reduction in servers as it accounts to 60% of the total power consumption. In this research work, a power-aware algorithm (PA) and an adaptive harmony search algorithm (AHSA) are proposed for the placement of reserved virtual machines in the datacenters to reduce the power consumption of servers. Modification of the standard harmony search algorithm is inevitable to suit this specific problem with varying global search space in each allocation interval. A task distribution algorithm is also proposed to distribute and balance the workload among the servers to evade over-utilization of servers which is unique of its kind against traditional virtual machine consolidation approaches that intend to restrain the number of powered on servers to the minimum as possible. Different policies for overload host selection and virtual machine selection are discussed for load balancing. The observations endorse that the AHSA outperforms, and yields better results towards the objective than, the PA algorithm and the existing counterparts.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2724 ◽  
Author(s):  
Yuan ◽  
Sun

High-energy consumption in data centers has become a critical issue. The dynamic server consolidation has significant effects on saving energy of a data center. An effective way to consolidate virtual machines is to migrate virtual machines in real time so that some light load physical machines can be turned off or switched to low-power mode. The present challenge is to reduce the energy consumption of cloud data centers. In this paper, for the first time, a server consolidation algorithm based on the culture multiple-ant-colony algorithm was proposed for dynamic execution of virtual machine migration, thus reducing the energy consumption of cloud data centers. The server consolidation algorithm based on the culture multiple-ant-colony algorithm (CMACA) finds an approximate optimal solution through a specific target function. The simulation results show that the proposed algorithm not only reduces the energy consumption but also reduces the number of virtual machine migration.


Sign in / Sign up

Export Citation Format

Share Document