A model of FeN-decorated BeO layer particle for CO gas adsorption

2021 ◽  
pp. 1-8
Author(s):  
Kosar Zarifi ◽  
Farnaz Rezaei ◽  
Seyed Mehdi Seyed Alizadeh

Carbon monoxide (CO) is known as a deathful gas produced by burning of hydrocarbons in a lack of enough oxygen, in which breathing CO leads to serious issues on human life health quality. Therefore, adsorption of CO gas is an essential task for diagnosis or removal of this dreadful gas in environment. To do this, a HEME-like model of iron-nitrogen-doped beryllium oxide (FeNBeO) monolayer was investigated for adsorbing CO gas by performing density functional theory (DFT) calculations. Two models were obtained for this process, in which relaxation of CO with C-head or O-head towards Fe region of monolayer. The results indicated that the formation of FeNBeO-CO model could be achieved more favorable than the formation of FeNBeO-OC model. The obtained optimized geometers and energies all approved this achievement for favorability of FeNBeO-CO model formation. Moreover, molecular orbital based electronic features indicated variations of such features for the models upon adsorption of CO substance, in which the models could be detectable in a sensor function for the existence of CO gas in the environment. As a consequence, the investigated FeNBeO monolayer could be proposed useful for adsorption of CO gas at least for the CO deathful gas diagnosis purposes.

2021 ◽  
pp. 2150154
Author(s):  
Wenchao Tian ◽  
Jiahao Niu ◽  
Wenhua Li ◽  
Xiaohan Liu

The two-dimensional (2D) plane of graphene has many active sites for gas adsorption. It has broad application prospects in the field of MEMS gas sensors. At present, there are many experimental studies on graphene gas sensors, but it is difficult to accurately control various influencing factors in the experiments. Therefore, this paper applies the first principle based on density functional theory to study the adsorption and detection characteristics of graphene on CO and CO2. The first-principles analysis method was used to study the adsorption characteristics and sensitivity of graphene. The results show that the inductive graphene has a sensitivity of 1.55% and 0.77% for CO and CO2, respectively. The Stone–Wales defects and multi-vacancy defects have greatly improved the sensitivity of graphene to CO, which is 35.25% and 4.14%, respectively. Introduction of defects increases the sensitivity of detection of CO and CO2, but also improves the selective gas detection material of these two gases. Thus, the control and selectively introducing defects may improve the detection accuracy of the graphene CO and CO2.


2004 ◽  
Vol 03 (04n05) ◽  
pp. 455-461
Author(s):  
YING DAI ◽  
ANYI LI ◽  
YING ZHANG ◽  
SHENGHAO HAN

Several Nitrogen (N)-hydrogen(H), N-dangling bond (DB) and N-single vacancy (V) complexes as the possible donor centers in diamond have been investigated using both supercell and cluster methods within the frame of density functional theory. We have found that the H—N—N—H complex exhibits shallower donor character than that of the N—H—N center discussed by Miyazaki et al.1 and it is one of the possible effective shallow donor centers in crystalline diamond. We conclude that the N—V related complex demonstrates a character of shallow donors and it should be one of the possible donor centers for the ultrananocrystalline diamond (UNCD) films, which are responsible for the n-type high conductivity of these films.


2018 ◽  
Vol 96 (12) ◽  
pp. 993-999 ◽  
Author(s):  
Chenhong Xu ◽  
Suqin Zhou ◽  
Jing Chen ◽  
Yuxiang Wang ◽  
Lei He

The adsorption mechanism of the CO molecule on Al(111) surface has been investigated systematically at the atom-molecule level by the method of periodic density functional theory. The adsorption energies, adsorption structures, charge transfer, and density of states have been calculated in a wide range of coverage. It is found that the hcp-hollow site is the energetically favorable site. A significant positive correlation has been found between the adsorption energy (Eads) and coverage. The adsorbed CO molecules are almost perpendicular on the surface with the C atom facing the surface. There is an obvious charge transfer from Al atoms to the C atom; the Al atoms that have interaction with the C atom offer the most charge. The 4σ, 1π, and 5σ molecular orbitals of CO are found to contribute to bonding with the Al. The charges filling in the 2π molecular orbital contribute to C–O bond activation. In conclusion, the passivation of aluminum surface and the activation of CO molecule occur simultaneously in the adsorption of CO on Al surface.


Author(s):  
Anderson Soares da Costa Azevêdo ◽  
Aldilene Saraiva-Souza ◽  
Vincent Meunier ◽  
Eduardo Costa Girão

Theoretical analysis based on density functional theory is used to describe the microscopic origins of emerging electronic and magnetic properties in quasi-1D nitrogen-doped graphene nanoribbon structures with chevron-like (or wiggly-edged)...


2020 ◽  
Vol 12 (02) ◽  
pp. 99-111
Author(s):  
Jamal A. Shlaka ◽  
◽  
Abbas H. Abo Nasria

Been studying the interactions between graphene - like aluminium nitride P(AlN)21 nano ribbons doped and defect (AlN)21Sheet, Molecules and small toxic gas molecules ( H2S), were built for two different adsorption sites on graphene like aluminium nitride P(AlN)21. this was done by employing B3LYP density functional theory (DFT) with 6-31G*(d,p) using Gaussian 09 program, Gaussian viw5.0 package of programs and Nanotube Modeller program 2018. the adsorptions of H2S on P(AlN)21, (C) atoms-doped P(AL-N)20 sheet, D-P(AL-N)20 and D-(C)atoms-doped P(AL-N)19 (on atom) with (Ead) (-0.468eV),(-0.473 eV), (-0.457 eV), (-0.4478 eV) and (-0.454 eV), respectively, (Ead) of H2S on the center ring of the P(AL-N)21, (C) atoms-doped P(AL-N)20 sheet, D-P(AL-N)20 and D-(C,B)atoms-doped P(AL-N)19 sheet are (-0.280 eV),(-0.465 eV), (-0.405 eV), (-0.468 eV) and -0.282 eV), respectively, are weak physisorption . However, the adsorptions of H2S, on the ((AlN)20 -B and D- (AlN)19 -B), (on atom N and center ring the sheet) are a strong chemisorption because of the (Ead) larger than -0.5 eV, due to the strong interaction, the ((AlN)20-B and D-(AlN)19-B), could catalyst or activate, through the results that we obtained, which are the improvement of the sheet P(AlN)21 by doping and per forming a defect in, it that can be used to design sensors. DOI: http://dx.doi.org/10.31257/2018/JKP/2020/120210


NANO ◽  
2019 ◽  
Vol 14 (03) ◽  
pp. 1950034
Author(s):  
Ximin Liang ◽  
Qiyan Zhang ◽  
Qinfu Zhao ◽  
He Zhao ◽  
Yifan Feng ◽  
...  

Density functional theory (DFT) calculations have been carried out to study the capacity of the B[Formula: see text]N[Formula: see text] nanocage encapsulated with alkali metals (Li, Na, K) for the CO2 adsorption and activation. It is found that after encapsulating alkali metals, the alkali metal atoms are closer to one side of clusters instead of exactly lying at the center, and a considerable charge transfers from the inner alkali metal atoms to the B[Formula: see text]N[Formula: see text] cage. Besides, the HOMO–LUMO gap (HLG) values of Li@B[Formula: see text]N[Formula: see text], Na@B[Formula: see text]N[Formula: see text] and K@B[Formula: see text]N[Formula: see text] are decreased to about 6[Formula: see text]eV, being much smaller than that of the pristine B[Formula: see text]N[Formula: see text]. Although the geometry structure parameters and the energy differences of M06-2X are slightly different from the ones of [Formula: see text]B97X-D, some identical results of two kinds of functional can be obtained. CO2 can be adsorbed chemically and physically on majority bonds of all the clusters, except for some bonds with large change in bond length and bond indices. The encapsulation of alkali-metal atoms may enhance the physical and chemical adsorption of CO2 on the surface of the clusters, in which Na@B[Formula: see text]N[Formula: see text] and K@B[Formula: see text]N[Formula: see text] are the most powerful physical and chemical adsorbent for CO2, respectively.


2014 ◽  
Vol 118 (15) ◽  
pp. 7741-7750 ◽  
Author(s):  
Debosruti Dutta ◽  
Brandon C. Wood ◽  
Shreyas Y. Bhide ◽  
K. Ganapathy Ayappa ◽  
Shobhana Narasimhan

2017 ◽  
Vol 5 (5) ◽  
pp. 2110-2114 ◽  
Author(s):  
G. R. Berdiyorov ◽  
M. Neek-Amal ◽  
I. A. Hussein ◽  
M. E. Madjet ◽  
F. M. Peeters

Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity and is highly selective towards CO2 against other major greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document