scholarly journals Research on Stress Detection of DC01 Steel via Barkhausen Noise

Author(s):  
Xiang Zhang ◽  
Jianping Peng ◽  
Xiaorong Gao ◽  
Jie Bai ◽  
Jianqiang Guo

The industrial component under loading change its mechanical characteristics by stress. It is very important to make clear the distribution of the applied stress in the component to reduce the failure. In this paper, magnetic Barkhausen noise (MBN) method is used to evaluate the stress of DC01 steel. Combined with theory for both magnetic domain and magnetization, this work analyzed MBN signal from energy point of view. Magnetic strength corresponding to the maximum MBN shows a downward trend with the increase of tensile stress. Plots of energy against stress showed a relationship providing a convenient method for detecting stress levels by MBN.

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2350
Author(s):  
Jia Liu ◽  
Guiyun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
Yongbing Xu ◽  
...  

Stress is the crucial factor of ferromagnetic material failure origin. However, the nondestructive test methods to analyze the ferromagnetic material properties’ inhomogeneity on the microscopic scale with stress have not been obtained so far. In this study, magnetic Barkhausen noise (MBN) signals on different silicon steel sheet locations under in situ tensile tests were detected by a high-spatial-resolution magnetic probe. The domain-wall (DW) motion, grain, and grain boundary were detected using a magneto-optical Kerr (MOKE) image. The time characteristic of DW motion and MBN signals on different locations was varied during elastic deformation. Therefore, a time-response histogram is proposed in this work to show different DW motions inside the grain and around the grain boundary under low tensile stress. In order to separate the variation of magnetic properties affected by the grain and grain boundary under low tensile stress corresponding to MBN excitation, time-division was carried out to extract the root-mean-square (RMS), mean, and peak in the optimized time interval. The time-response histogram of MBN evaluated the silicon steel sheet’s inhomogeneous material properties, and provided a theoretical and experimental reference for ferromagnetic material properties under stress.


2018 ◽  
Vol 38 ◽  
pp. 01021
Author(s):  
Wu Jianfeng ◽  
Yu Luqin ◽  
Cao Guangjie ◽  
Li Wei

In this paper, the daily precipitation data of 19 meteorological stations in Guizhou Province from 1961 to 2015 are used. Using GIS spatial analysis method and linear trend analysis method, the distribution characteristics of annual and seasonal precipitation in Guizhou province were analyzed from space and time. The results show that: (1) From the perspective of spatial distribution, annual precipitation is generally less in the south and north and less in the east and west. The precipitation in winter and spring is east-west distribution and decreases from east to west in the four seasons. The precipitation in summer is roughly north-south and south-north less. The precipitation in autumn is mainly concentrated in southwest Guizhou and Chishui valley. (2) From the time distribution point of view, the precipitation in Guizhou Province showed a general downward trend, of which the precipitation in spring, autumn and winter showed a decreasing trend, the downward trend in autumn was more obvious, and the precipitation in summer increased but not obviously.


2021 ◽  
Vol 523 ◽  
pp. 167588
Author(s):  
Fasheng Qiu ◽  
Matic Jovičević-Klug ◽  
Guiyun Tian ◽  
Guanhua Wu ◽  
Jeffrey McCord

2005 ◽  
Vol 500-501 ◽  
pp. 655-662 ◽  
Author(s):  
Xavier Kleber ◽  
Aurélie Hug-Amalric ◽  
Jacques Merlin

In this work, we show that the measurement of the Barkhausen noise allows the residual stresses in each of the two phases of ferrite-martensite steels to be characterized. We have first studied the effect of a tensile and a compressive stress on the Barkhausen noise signature. We observed that for a ferrite-martensite steel, the application of a tensile stress increases the Barkhausen activity of the martensite and ferrite phases, whereas a compressive one reduces it. In a second time, we induced residual stresses by applying a plastic deformation to ferrite-martensite steels. After a tensile plastic deformation, we observed that (i) compressive residual stresses appear in ferrite, and (ii) tensile residual stresses appear in martensite. An opposite behavior is observed after a compressive plastic deformation. These results show that the Barkhausen noise measurement makes it possible to highlight in a nondestructive way the distribution of the stresses in each of the two phases of a ferrite-martensite steel. This result could be used to characterize industrial Dual- Phases steels that are plastically deformed during mechanical processes.


Sign in / Sign up

Export Citation Format

Share Document