Prospects for Stem Cell-Based Regenerative Therapies in India

StemJournal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Dinesh Boopalan ◽  
Ramanan Pandian ◽  
Gokul Kesavan

Stem cells offer a promising therapeutic strategy to not only treat several incurable diseases but also regenerate damaged tissues. The current global boom in the field of stem cell and regenerative therapies had led to India becoming a global hotspot for stem cell-based therapies. In this review, we assess the current status of stem cell therapy trials in India and show that the bone marrow-derived stem cells, like mesenchymal stem/stromal cells (MSCs), are predominantly used. Phase 1 and 2 clinical trials have also used MSCs to alleviate symptoms of severe novel coronavirus infections. Recent breakthroughs in gene editing technologies, combined with stem cell therapy, can be effectively harnessed to devise large-scale and affordable treatments for haematological diseases that are highly prevalent in India, like beta-thalassemia and sickle cell diseases. Innovations in stem cell therapy in India can make treatments more affordable to address the needs of in-country patients.

2020 ◽  
Vol 58 (5) ◽  
pp. 881-887
Author(s):  
Shuta Ishigami ◽  
Toshikazu Sano ◽  
Sunaya Krishnapura ◽  
Tatsuo Ito ◽  
Shunji Sano

Abstract Significant achievements in paediatric cardiology, surgical treatment and intensive care of congenital heart disease have drastically changed clinical outcomes for paediatric patients. Nevertheless, late-onset heart failure in children after staged surgeries still remains a serious concern in the medical community. Heart transplantation is an option for treatment; however, the shortage of available organs is a persistent problem in many developed countries. In order to resolve these issues, advanced technologies, such as innovative mechanical circulatory support devices and regenerative therapies, are strongly desired. Accumulated evidence regarding cell-based cardiac regenerative therapies has suggested their safety and efficacy in treating adult heart failure. Given that young children seem to have a higher regenerative capacity than adults, stem cell-based therapies appear a promising treatment option for paediatric heart failure as well. Based on the findings from past trials and studies, we present the potential of various different types of stem cells, ranging from bone marrow mononuclear cells to cardiosphere-derived stem cells for use in paediatric cell-based therapies. Here, we assess both the current challenges associated with cell-based therapies and novel strategies that may be implemented in the future to advance stem cell therapy in the paediatric population.


2020 ◽  
Vol 10 (14) ◽  
pp. 4852 ◽  
Author(s):  
Shima Masoudi Asil ◽  
Jyoti Ahlawat ◽  
Gileydis Guillama Barroso ◽  
Mahesh Narayan

In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Erfan Arabpour ◽  
Sina Khoshdel ◽  
Negin Tabatabaie ◽  
Ali Akhgarzad ◽  
Moein Zangiabadian ◽  
...  

Introduction: Vaccination seems to be a good solution for preventing and controlling coronavirus disease (COVID-19) pandemic, but still there are some challenges in COVID-19 vaccination. Investigating new therapeutic options for COVID-19 is necessary. The current study aimed to evaluate the safety and efficacy of stem cells in treating patients with COVID-19.Methods: We reviewed the relevant scientific literature published up to April 1, 2021. The pooled risk ratio (RR) with 95% CI was assessed using a fixed or random-effect model. We considered P < 0.05 as statistically significant for publication bias. Data were analyzed by Comprehensive Meta-Analysis software, Version 2.0 (Biostat, Englewood, NJ).Results: After reviewing 1,262 records, we identified 10 studies that met the inclusion criteria. The analysis showed that stem cell therapy could significantly reduce the mortality rate (RR 0.471, 95% CI: 0.270–0.821) and morbidity (RR 0.788, 95% CI: 0.626–0.992) in patients with COVID-19; compared with the control group.Conclusions: The present study suggests that stem cell therapy has a remarkable effect on reducing mortality and morbidity of patients with COVID-19. Further large-scale studies are needed to approve these results. Defining a protocol for stem cell therapy in patients with COVID-19 can lead to achieving the best clinical outcomes.


2020 ◽  
Vol 77 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Jieun Kim ◽  
Yujeong Lee ◽  
Seulah Lee ◽  
Kipom Kim ◽  
Minjung Song ◽  
...  

Alzheimer’s disease (AD) is the most common progressive neurodegenerative disease worldwide, but its cause remains unclear. Although a few drugs can provide temporary and partial relief of symptoms in some patients, no curative treatment is available. Therefore, attention has been focused on research using stem cells to treat AD. Among stem cells, mesenchymal stem cells (MSCs) have been used to treat the related pathologies in animal models of AD, and other neurodegenerative disease. This review describes latest research trends on the use of MSC-based therapies in AD and its action of mechanism. MSCs have several beneficial effects. They would be specified as the reduction of neuroinflammation, the elimination of amyloid-β, neurofibrillary tangles, and abnormal protein degradation, the promotion of autophagy-associated and blood-brain barrier recoveries, the upregulation of acetylcholine levels, improved cognition, and the recovery of mitochondrial transport. Therefore, this review describes the latest research trends in MSC-based therapy for AD by demonstrating the importance of MSC-based therapy and understanding of its mechanisms in AD and discusses the limitations and perspectives of stem cell therapy in AD.


2013 ◽  
Vol 368 (1609) ◽  
pp. 20110334 ◽  
Author(s):  
Huan-Ting Lin ◽  
Makoto Otsu ◽  
Hiromitsu Nakauchi

In recent times, the epigenetic study of pluripotency based on cellular reprogramming techniques led to the creation of induced pluripotent stem cells. It has come to represent the forefront of a new wave of alternative therapeutic approaches in the field of stem cell therapy. Progress in drug development has saved countless lives, but there are numerous intractable diseases where curative treatment cannot be achieved through pharmacological intervention alone. Consequently, there has been an unfortunate rise in incidences of organ failures, degenerative disorders and cancers, hence novel therapeutic interventions are required. Stem cells have unique self-renewal and multilineage differentiation capabilities that could be harnessed for therapeutic purposes. Although a number of mature differentiated cells have been characterized in vitro , few have been demonstrated to function in a physiologically relevant context. Despite fervent levels of enthusiasm in the field, the reality is that other than the employment of haematopoietic stem cells, many other therapies have yet to be thoroughly proven for their therapeutic benefit and safety in application. This review shall focus on a discussion regarding the current status of stem cell therapy, the issues surrounding it and its future prospects with a general background on the regulatory networks underlying pluripotency.


2009 ◽  
Vol 35 (2) ◽  
pp. 85-93 ◽  
Author(s):  
L. Vija ◽  
D. Farge ◽  
J.-F. Gautier ◽  
P. Vexiau ◽  
C. Dumitrache ◽  
...  

2014 ◽  
Vol 20 ◽  
pp. S128-S131 ◽  
Author(s):  
Hideki Mochizuki ◽  
Chi-Jing Choong ◽  
Toru Yasuda

2015 ◽  
Vol 56 (6) ◽  
pp. 409 ◽  
Author(s):  
Jae Heon Kim ◽  
Yun Seob Song

2020 ◽  
Vol 22 (3) ◽  
pp. 286-305 ◽  
Author(s):  
Shuai Zhang ◽  
Brittany Bolduc Lachance ◽  
Bilal Moiz ◽  
Xiaofeng Jia

Stem cells have been used for regenerative and therapeutic purposes in a variety of diseases. In ischemic brain injury, preclinical studies have been promising, but have failed to translate results to clinical trials. We aimed to explore the application of stem cells after ischemic brain injury by focusing on topics such as delivery routes, regeneration efficacy, adverse effects, and in vivo potential optimization. PUBMED and Web of Science were searched for the latest studies examining stem cell therapy applications in ischemic brain injury, particularly after stroke or cardiac arrest, with a focus on studies addressing delivery optimization, stem cell type comparison, or translational aspects. Other studies providing further understanding or potential contributions to ischemic brain injury treatment were also included. Multiple stem cell types have been investigated in ischemic brain injury treatment, with a strong literature base in the treatment of stroke. Studies have suggested that stem cell administration after ischemic brain injury exerts paracrine effects via growth factor release, blood-brain barrier integrity protection, and allows for exosome release for ischemic injury mitigation. To date, limited studies have investigated these therapeutic mechanisms in the setting of cardiac arrest or therapeutic hypothermia. Several delivery modalities are available, each with limitations regarding invasiveness and safety outcomes. Intranasal delivery presents a potentially improved mechanism, and hypoxic conditioning offers a potential stem cell therapy optimization strategy for ischemic brain injury. The use of stem cells to treat ischemic brain injury in clinical trials is in its early phase; however, increasing preclinical evidence suggests that stem cells can contribute to the down-regulation of inflammatory phenotypes and regeneration following injury. The safety and the tolerability profile of stem cells have been confirmed, and their potent therapeutic effects make them powerful therapeutic agents for ischemic brain injury patients.


Sign in / Sign up

Export Citation Format

Share Document