Otolith-ocular responses in Meniere's patients before and after endolymphatic shunt operation

2008 ◽  
Vol 17 (2-3) ◽  
pp. 113-118 ◽  
Author(s):  
Martin Westhofen

Caloric testing in prone/supine position and constant velocity off-vertical axis rotation (OVAR) in yaw axis (rotate-then-tilt paradigm) can evaluate labyrinth function and vestibular-ocular reflex (VOR) behaviour before and after endolymphatic shunt surgery (ESS). Preoperative and postoperative otolith dysfunction can be documented by constant velocity OVAR, before the VOR is modulated by the vestibular compensation. Vestibulo-ocular responses in prone/supine position and linear VOR (lVOR) OVAR responses were observed in 10 patients before and after ESS. Ipsilateral caloric reaction in prone/supine position was reduced after ESS. Otolith-ocular function and canal-otolith-interaction were improved postoperatively. Meniere's patients with bias component opposite to normal when rotating towards the lesioned ear showed relief of symptoms postoperatively. The bias component returning to normal can help to identify the relief of Meniere's attacks after ESS. The canal-otolith interaction can be observed pre- and postoperatively by means of caloric reaction in prone/supine position as part of the clinical routine.

2007 ◽  
Vol 16 (4-5) ◽  
pp. 209-215
Author(s):  
Joseph M. Furman ◽  
Mark S. Redfern ◽  
Rolf G. Jacob

Previous studies of vestibulo-ocular function in patients with anxiety disorders have suggested a higher prevalence of peripheral vestibular dysfunction compared to control populations, especially in panic disorder with agoraphobia. Also, our recent companion studies have indicated abnormalities in postural control in patients with anxiety disorders who report a high degree of space and motion discomfort. The aim of the present study was to assess the VOR, including the semicircular canal-ocular reflex, the otolith-ocular reflex, and semicircular canal-otolith interaction, in a well-defined group of patients with anxiety disorders. The study included 72 patients with anxiety disorders (age 30.6 +/− 10.6 yrs; 60 (83.3% F) and 29 psychiatrically normal controls (age 35.0 +/minus; 11.6 yrs; 24 (82.8% F). 25 patients had panic disorder; 47 patients had non-panic anxiety. Patients were further categorized based on the presence (45 of 72) or absence (27 of 72) of height phobia and the presence (27 of 72) or absence (45 of 72) of excessive space and motion discomfort (SMD). Sinusoidal and constant velocity earth-vertical axis rotation (EVAR) was used to assess the semicircular canal-ocular reflex. Constant velocity off-vertical axis rotation (OVAR) was used to assess both the otolith-ocular reflex and static semicircular canal-otolith interaction. Sinusoidal OVAR was used to assess dynamic semicircular canal-otolith interaction. The eye movement response to rotation was measured using bitemporal electro-oculography. Results showed a significantly higher VOR gain and a significantly shorter VOR time constant in anxiety patients. The effect of anxiety on VOR gain was significantly greater in patients without SMD as compared to those with SMD. Anxiety patients without height phobia had a larger OVAR modulation. We postulate that in patients with anxiety, there is increased vestibular sensitivity and impaired velocity storage. Excessive SMD and height phobia seem to have a mitigating effect on abnormal vestibular sensitivity, possibly via a down-weighting of central vestibular pathways.


1992 ◽  
Vol 101 (8) ◽  
pp. 643-650 ◽  
Author(s):  
Joseph M. R. Furman ◽  
Robert H. Schor ◽  
Timothy L. Schumann

The vestibulo-ocular reflex was studied via off-vertical axis rotation (OVAR) in the dark. The axis of the turntable could be tilted from vertical by up to 30°. Eye movements were measured with electro-oculography. Results from healthy asymptomatic subjects indicated that 1) a reliable otolith-induced response could be obtained during constant velocity OVAR using a velocity of 60°/s with a tilt of 30°; 2) constant velocity OVAR rotation was nausea-producing and, especially if subjects were rotated in the dark about an earth-vertical axis prior to being tilted, disorienting; and 3) sinusoidal OVAR produced minimal nausea; the eye movement response appeared to be the result of a combination of semicircular canal and otolith components. We conclude that OVAR has the potential of becoming a useful method for clinically assessing both the otolith-ocular reflex and semicircular canal—otolith interaction.


2003 ◽  
Vol 13 (4-6) ◽  
pp. 377-393
Author(s):  
Steven T. Moore ◽  
Gilles Clément ◽  
Mingjai Dai ◽  
Theodore Raphan ◽  
David Solomon ◽  
...  

In this paper we review space flight experiments performed by our laboratory. Rhesus monkeys were tested before and after 12 days in orbit on COSMOS flights 2044 (1989) and 2229 (1992–1993). There was a long-lasting decrease in post-flight ocular counter-rolling (70%) and vergence (50%) during off-vertical axis rotation. In one animal, the orientation of optokinetic after-nystagmus shifted by 28° from the spatial vertical towards the body vertical early post-flight. Otolith-ocular and perceptual responses were also studied in four astronauts on the 17-day Neurolab shuttle mission (STS-90) in 1998. Ocular counter-rolling was unchanged in response to 1-g and 0.5-g Gy centrifugation during and after flight and to post-flight static roll tilts relative to pre-flight values. Orientation of the optokinetic nystagmus eye velocity axis to gravito-inertial acceleration (GIA) during centrifugation was also unaltered by exposure to microgravity. Perceptual orientation to the GIA was maintained in-flight, and subjects did not report sensation of translation during constant velocity centrifugation. These studies suggest that percepts and ocular responses to tilt are determined by sensing the body vertical relative to the GIA. The findings also raise the possibility that 'artificial gravity' during the Neurolab flight counteracted adaptation of these otolith-ocular responses.


2020 ◽  
Vol 79 (3) ◽  
pp. 164-170
Author(s):  
Fumihiro Mochizuki ◽  
Yasuhiro Miyamoto ◽  
Yoshiyuki Sasano ◽  
Kotaro Arai ◽  
Hiroshi Nishimoto ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Samantha B. Douglas ◽  
Gilles Clément ◽  
Pierre Denise ◽  
Scott J. Wood

1992 ◽  
Vol 2 (1) ◽  
pp. 59-69
Author(s):  
Robert J. Peterka ◽  
Martha S. Benolken

Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in a subject’s perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function that could be of either central or peripheral origin. Deviations from perfect vestibulo-ocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. We looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflexive and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests in the same subjects of both perceptual bias and VOR symmetry were well correlated.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Maria da Glória Canto de Sousa

Vestibular Rehabilitation (VR), a method of therapy for dizziness, aims at reestablishing body balance and also at facilitating central compensation by means of adaptation and substitution mechanisms. With technological advance, the feasibility of a device which aided in VR process took place, both for stimulating and monitoring patients. In that sense, an application called Dizziness APP was developed in order to simplify and automatize dizziness therapy process performed by the phonoaudiology professional. The aim of the present study was to report a Dizziness APP experience of usage as therapeutic strategic towards dizziness, besides comparing dizziness impact on quality of life before and after using that application. It is a descriptive, exploratory study with a qualitative approach. A subject, age 29, female gender, took participation in the present study being solely subjected to Vestibular-Ocular-Reflex (VOR) Exercises by means of vertical, horizontal and oblique optokinetic stimulation during a period of six months. The scores obtained on Dizziness Handicap Inventory (DHI), monthly, expressed by the utilization of an automatized and simplified digital process available on the Dizziness APP application, were used. Initial DHI score achieved 46 points and, upon treatment conclusion, 0 point. Using Dizziness APP as a therapeutic resource enabled the following up, monitoring and remission of dizziness symptom demonstrating the beneficial effects by means of optokinetic exercise during the Dizziness APP process of validation.


1997 ◽  
Vol 78 (2) ◽  
pp. 1193-1197 ◽  
Author(s):  
Susan Wearne ◽  
Theodore Raphan ◽  
Bernard Cohen

Wearne, Susan, Theodore Raphan, and Bernard Cohen. Contribution of vestibular commissural pathways to spatial orientation of the angular vestibuloocular reflex. J. Neurophysiol. 78: 1193–1197, 1997. During nystagmus induced by the angular vestibuloocular reflex (aVOR), the axis of eye velocity tends to align with the direction of gravitoinertial acceleration (GIA), a process we term “spatial orientation of the aVOR.” We studied spatial orientation of the aVOR in rhesus and cynomolgus monkeys before and after midline section of the rostral medulla abolished all oculomotor functions related to velocity storage, leaving the direct optokinetic and vestibular pathways intact. Optokinetic afternystagmus and the bias component of off-vertical-axis rotation were lost, and the aVOR time constant was reduced to a value commensurate with the time constants of primary semicircular canal afferents. Spatial orientation of the aVOR, induced either during optokinetic or vestibular stimulation, was also lost. Vertical and roll aVOR time constants could no longer be lengthened in side-down or supine/prone positions, and static and dynamic tilts of the GIA no longer produced cross-coupling from the yaw to pitch and yaw to roll axes. Consequently, the induced nystagmus remained entirely in head coordinates after the lesion, regardless of the direction of the resultant GIA vector. Gains of the aVOR and of optokinetic nystagmus to steps of velocity were unaffected or slightly increased. These results are consistent with a model in which the direct aVOR pathways are organized in semicircular canal coordinates and spatial orientation is restricted to the indirect (velocity storage) pathways.


2008 ◽  
Vol 18 (1) ◽  
pp. 25-37
Author(s):  
Ian Garrick-Bethell ◽  
Thomas Jarchow ◽  
Heiko Hecht ◽  
Laurence R. Young

Out-of-plane head movements performed during fast rotation produce non-compensatory nystagmus, sensations of illusory motion, and often motion sickness. Adaptation to this cross-coupled Coriolis stimulus has previously been demonstrated for head turns made in the yaw (transverse) plane of motion, during supine head-on-axis rotation. An open question, however, is if adaptation to head movements in one plane of motion transfers to head movements performed in a new, unpracticed plane of motion. Evidence of transfer would imply the brain builds up a generalized model of the vestibular sensory-motor system, instead of learning a variety of individual input/output relations separately. To investigate, over two days 9 subjects performed pitch head turns (sagittal plane) while rotating, before and after a series of yaw head turns while rotating. A Control Group of 10 subjects performed only the pitch movements. The vestibulo-ocular reflex (VOR) and sensations of illusory motion were recorded in the dark for all movements. Upon comparing the two groups we failed to find any evidence of transfer from the yaw plane to the pitch plane, suggesting that adaptation to cross-coupled stimuli is specific to the particular plane of head movement. The findings have applications for the use of centrifugation as a possible countermeasure for long duration spaceflight. Adapting astronauts to unconstrained head movements while rotating will likely require exposure to head movements in all planes and directions.


2001 ◽  
Vol 11 (2) ◽  
pp. 91-103
Author(s):  
Joseph M. Furman ◽  
Mark S. Redfern

We assessed the influence of age on the otolith-ocular reflex and semicircular canal-otolith interaction. Healthy young (n=30) and healthy older (n=60) subjects were rotated about an earth vertical axis, and about a 30 degree off-vertical axis. Eye movements during and following rotation were recorded using electro-oculography. Results indicated that there were statistically significant changes in the otolith-ocular reflex and semicircular canal-otolith interaction as a function of age. The modulation component during off-vertical axis rotation (OVAR) was greater in the older group compard to the young adults, whereas the bias component was smaller with advanced age. The foreshortening of the vestibulo-ocular reflex time constant induced by post-rotatory head tilt following cessation of rotation was less prominent in the older group. There were no consistent changes in the semicircular canal-ocular reflex. Overall, response parameters showed more variability in the older subjects. We conclude that age related changes in the otolith-ocular reflex and semicircular canal-otolith interaction are a result primarily of a degradation of central vestibular processing of otolith signals rather than a decline of peripheral vestibular function.


Sign in / Sign up

Export Citation Format

Share Document