Vestibular adaptation to centrifugation does not transfer across planes of head rotation

2008 ◽  
Vol 18 (1) ◽  
pp. 25-37
Author(s):  
Ian Garrick-Bethell ◽  
Thomas Jarchow ◽  
Heiko Hecht ◽  
Laurence R. Young

Out-of-plane head movements performed during fast rotation produce non-compensatory nystagmus, sensations of illusory motion, and often motion sickness. Adaptation to this cross-coupled Coriolis stimulus has previously been demonstrated for head turns made in the yaw (transverse) plane of motion, during supine head-on-axis rotation. An open question, however, is if adaptation to head movements in one plane of motion transfers to head movements performed in a new, unpracticed plane of motion. Evidence of transfer would imply the brain builds up a generalized model of the vestibular sensory-motor system, instead of learning a variety of individual input/output relations separately. To investigate, over two days 9 subjects performed pitch head turns (sagittal plane) while rotating, before and after a series of yaw head turns while rotating. A Control Group of 10 subjects performed only the pitch movements. The vestibulo-ocular reflex (VOR) and sensations of illusory motion were recorded in the dark for all movements. Upon comparing the two groups we failed to find any evidence of transfer from the yaw plane to the pitch plane, suggesting that adaptation to cross-coupled stimuli is specific to the particular plane of head movement. The findings have applications for the use of centrifugation as a possible countermeasure for long duration spaceflight. Adapting astronauts to unconstrained head movements while rotating will likely require exposure to head movements in all planes and directions.

2019 ◽  
Vol 122 (3) ◽  
pp. 984-993 ◽  
Author(s):  
Carlo N. Rinaudo ◽  
Michael C. Schubert ◽  
William V. C. Figtree ◽  
Christopher J. Todd ◽  
Americo A. Migliaccio

The vestibulo-ocular reflex (VOR) is the only system that maintains stable vision during rapid head rotations. The VOR gain (eye/head velocity) can be trained to increase using a vestibular-visual mismatch stimulus. We sought to determine whether low-frequency (sinusoidal) head rotation during training leads to changes in the VOR during high-frequency head rotation testing, where the VOR is more physiologically relevant. We tested eight normal subjects over three sessions. For training protocol 1, subjects performed active sinusoidal head rotations at 1.3 Hz while tracking a laser target, whose velocity incrementally increased relative to head velocity so that the VOR gain required to stabilize the target went from 1.1 to 2 over 15 min. Protocol 2 was the same as protocol 1, except that head rotations were at 0.5 Hz. For protocol 3, head rotation frequency incrementally increased from 0.5 to 2 Hz over 15 min, while the VOR gain required to stabilize the target was kept at 2. We measured the active and passive, sinusoidal (1.3Hz) and head impulse VOR gains before and after each protocol. Sinusoidal and head impulse VOR gains increased in protocols 1 and 3; however, although the sinusoidal VOR gain increase was ~20%, the related head impulse gain increase was only ~10%. Protocol 2 resulted in no-gain adaptation. These data show human VOR adaptation is frequency selective, suggesting that if one seeks to increase the higher-frequency VOR response, i.e., where it is physiologically most relevant, then higher-frequency head movements are required during training, e.g., head impulses. NEW & NOTEWORTHY This study shows that human vestibulo-ocular reflex adaptation is frequency selective at frequencies >0.3 Hz. The VOR in response to mid- (1.3 Hz) and high-frequency (impulse) head rotations were measured before and after mid-frequency sinusoidal VOR adaptation training, revealing that the mid-frequency gain change was higher than high-frequency gain change. Thus, if one seeks to increase the higher-frequency VOR response, where it is physiologically most relevant, then higher-frequency head movements are required during training.


1995 ◽  
Vol 112 (4) ◽  
pp. 526-532 ◽  
Author(s):  
Helen Cohen ◽  
Maureen Kane-Wineland ◽  
Laura V. Miller ◽  
Catherine L. Hatfield

Otolaryngologists often prescribe head movement exercise programs for patients with vestibular disorders, although the effectiveness of these programs and the critical features of the exercises are poorly understood. Because many patients who dislike exercising do not follow through with their exercises, alternatives to the traditional repetitive exercises would be useful. Subjects diagnosed with vestibular disorders were treated for 6 weeks with either an outpatient exercise program that incorporated interesting, purposeful activities or a simple home program of head movements, comparable with the exercises otolaryngologists often give their patients when they do not refer to rehabilitation. Both treatments incorporated repetitive head movements in all planes in space, graduated in size and speed. Subjects were all tested before and after treatment with standard measures of vestibulo-ocular reflex and balance, level of vertigo, gross motor skills, and self-care independence. Subjects in both groups improved significantly on the functional measures, with slightly greater improvements in the occupational therapy group. The results were maintained 3 months after the cessation of intervention. These data suggest that graded purposeful activities are a useful alternative for treating this patient population and that the essential factor in any exercise program is the use of repetitive head movements.


2020 ◽  
Vol 124 (1) ◽  
pp. 115-133 ◽  
Author(s):  
Anatol G. Feldman ◽  
Lei Zhang

Conventional explanations of the vestibulo-ocular reflex (VOR) and eye and head movements are revisited by considering two alternative frameworks addressing the question of how the brain controls motor actions. Traditionally, biomechanical and/or computational frameworks reflect the views of several prominent scholars of the past, including Helmholtz and von Holst, who assumed that the brain directly specifies the desired motor outcome and uses efference copy to influence perception. However, empirical studies resulting in the theory of referent control of action and perception (an extension of the equilibrium-point hypothesis) revealed that direct specification of motor outcome is inconsistent with nonlinear properties of motoneurons and with the physical principle that the brain can control motor actions only indirectly, by changing or maintaining the values of neurophysiological parameters that influence, but can remain independent of, biomechanical variables. Some parameters are used to shift the origin (referent) points of spatial frames of reference (FRs) or system of coordinates in which motor actions emerge without being predetermined. Parameters are adjusted until the emergent motor actions meet the task demands. Several physiological parameters and spatial FRs have been identified, supporting the notion of indirect, referent control of movements. Instead of integration of velocity-dependent signals, position-dimensional referent signals underlying head motion can likely be transmitted to motoneurons of extraocular muscles. This would produce compensatory eye movement preventing shifts in gaze during head rotation, even after bilateral destruction of the labyrinths. The referent control framework symbolizes a shift in the paradigm for the understanding of VOR and eye and head movement production.


2016 ◽  
Vol 96 (8) ◽  
pp. 1190-1195 ◽  
Author(s):  
Jurryt de Vries ◽  
Britta K. Ischebeck ◽  
Lennard P. Voogt ◽  
Malou Janssen ◽  
Maarten A. Frens ◽  
...  

Abstract Background Neck pain is a widespread complaint. People experiencing neck pain often present an altered timing in contraction of cervical muscles. This altered afferent information elicits the cervico-ocular reflex (COR), which stabilizes the eye in response to trunk-to-head movements. The vestibulo-ocular reflex (VOR) elicited by the vestibulum is thought to be unaffected by afferent information from the cervical spine. Objective The aim of the study was to measure the COR and VOR in people with nonspecific neck pain. Design This study utilized a cross-sectional design in accordance with the STROBE statement. Methods An infrared eye-tracking device was used to record the COR and the VOR while the participant was sitting on a rotating chair in darkness. Eye velocity was calculated by taking the derivative of the horizontal eye position. Parametric statistics were performed. Results The mean COR gain in the control group (n=30) was 0.26 (SD=0.15) compared with 0.38 (SD=0.16) in the nonspecific neck pain group (n=37). Analyses of covariance were performed to analyze differences in COR and VOR gains, with age and sex as covariates. Analyses of covariance showed a significantly increased COR in participants with neck pain. The VOR between the control group, with a mean VOR of 0.67 (SD=0.17), and the nonspecific neck pain group, with a mean VOR of 0.66 (SD=0.22), was not significantly different. Limitations Measuring eye movements while the participant is sitting on a rotating chair in complete darkness is technically complicated. Conclusions This study suggests that people with nonspecific neck pain have an increased COR. The COR is an objective, nonvoluntary eye reflex and an unaltered VOR. This study shows that an increased COR is not restricted to patients with traumatic neck pain.


2003 ◽  
Vol 13 (2-3) ◽  
pp. 79-91
Author(s):  
Stefano Ramat ◽  
Roberto Schmid ◽  
Daniela Zambarbieri

Passive head rotation in darkness produces vestibular nystagmus, consisting of slow and quick phases. The vestibulo-ocular reflex produces the slow phases, in the compensatory direction, while the fast phases, in the same direction as head rotation, are of saccadic origin. We have investigated how the saccadic components of the ocular motor responses evoked by active head rotation in darkness are generated, assuming the only available sensory information is that provided by the vestibular system. We recorded the eye and head movements of nine normal subjects during active head rotation in darkness. Subjects were instructed to rotate their heads in a sinusoidal-like manner and to focus their attention on producing a smooth head rotation. We found that the desired eye position signal provided to the saccadic mechanism by the vestibular system may be modeled as a linear combination of head velocity and head displacement information. Here we present a mathematical model for the generation of both the slow and quick phases of vestibular nystagmus based on our findings. Simulations of this model accurately fit experimental data recorded from subjects.


1991 ◽  
Vol 1 (3) ◽  
pp. 263-277 ◽  
Author(s):  
J.L. Demer ◽  
J. Goldberg ◽  
F.I. Porter ◽  
H.A. Jenkins ◽  
K. Schmidt

Vestibularly and visually driven eye movements interact to compensate for head movements to maintain the necessary retinal image stability for clear vision. The wearing of highly magnifying telescopic spectacles requires that such compensatory visual-vestibular interaction operate in a quantitative regime much more demanding than that normally encountered. We employed electro-oculography to investigate the effect of wearing of 2×, 4×, and 6× binocular telescopic spectacles on visual-vestibular interactions during sinusoidal head rotation in 43 normal subjects. All telescopic spectacle powers produced a large, immediate increase in the gain (eye velocity/head velocity) of compensatory eye movements, called the visual-vestibulo-ocular reflex (VVOR). However, the amount of VVOR gain augmentation became limited as spectacle magnification and the amplitude of head velocity increased. Optokinetic responses during wearing of telescopic spectacles exhibited a similar nonlinearity with respect to stimulus amplitude and spectacle magnification. Computer simulation was used to demonstrate that the nonlinear response of the VVOR with telescopic spectacles is a result of nonlinearities in visually guided tracking movements. Immediate augmentation of VVOR gain by telescopic spectacles declined significantly with increasing age in the subject pool studied. Presentation of unmagnified visual field peripheral to the telescopic spectacles reduced the immediate VVOR gain-enhancing effect of central magnified vision. These results imply that the VVOR may not be adequate to maintain retinal image stability during head movements when strongly magnifying telescopic spectacles are worn.


1991 ◽  
Vol 1 (2) ◽  
pp. 187-197
Author(s):  
G.M. Halmagyi ◽  
I.S. Curthoys ◽  
P.D. Cremer ◽  
C.J. Henderson ◽  
M. Staples

To determine the relative contributions of ampullofugal (AF) and ampullopetal (AP) stimulation of the horizontal semicircular canal (HSCC) to the horizontal vestibulo-ocular reflex (HVOR), 12 patients were studied 1 year after total unilateral vestibular deafferentation (UVD). Compensatory eye movement responses to impulses of horizontal head rotation were studied using magnetic search coils. The head impulses were rapid (up to 3000 deg/sec/sec) passive, unpredictable, step displacements of horizontal angular head position with respect to the trunk. Tbe results from these 12 patients were compared with results from 30 normal subjects. An HVOR deficit was found to each side. The HVOR in response to head impulses toward the deafferented side, a response generated exclusively by ampullofugal stimulation of the single functioning HSCC, was severely deficient with an average gain of 0.25; the HVOR in response to head impulses toward the intact side, a response generated exclusively by ampullopetal stimulation of the single functioning HSCC, was mildly but significantly deficient compared with normal subjects. These results show that rapid, unpredictable head movements, unlike slow, predictable head movements, do demonstrate the AP-AF HVOR asymmetry, which could be expected from consideration of the behavior of single vestibular afferent neurons, an asymmetry that is expressed by Ewald’s 2nd Law.


Author(s):  
Michael S. Salman ◽  
James A. Sharpe ◽  
Linda Lillakas ◽  
Maureen Dennis ◽  
Martin J. Steinbach

Background:Chiari type II malformation (CII) is a developmental anomaly of the cerebellum and brainstem, which are important structures for processing the vestibulo-ocular reflex (VOR). We investigated the effects of the deformity of CII on the angular VOR during active head motion.Methods:Eye and head movements were recorded using an infrared eye tracker and magnetic head tracker in 20 participants with CII [11 males, age range 8-19 years, mean (SD) 14.4 (3.2) years]. Thirty-eight age-matched healthy children and adolescents (21 males) constituted the control group. Participants were instructed to ‘look’ in darkness at the position of their thumb, placed 25 cm away, while they made horizontal and vertical sinusoidal head rotations at frequencies of about 0.5 Hz and 2 Hz. Parametric and non-parametric tests were used to compare the two groups.Results:The VOR gains, the ratio of eye to head velocities, were abnormally low in two participants with CII and abnormally high in one participant with CII.Conclusion:The majority of participants with CII had normal VOR performance in this investigation. However, the deformity of CII can impair the active angular VOR in some patients with CII. Low gain is attributed to brainstem damage and high gain to cerebellar dysfunction.


2005 ◽  
Vol 93 (4) ◽  
pp. 2028-2038 ◽  
Author(s):  
Ramnarayan Ramachandran ◽  
Stephen G. Lisberger

The rotatory vestibulo-ocular reflex (VOR) keeps the visual world stable during head movements by causing eye velocity that is equal in amplitude and opposite in direction to angular head velocity. We have studied the performance of the VOR in darkness for sinusoidal angular head oscillation at frequencies ranging from 0.5 to 50 Hz. At frequencies of ≥25 Hz, the harmonic distortion of the stimulus and response were estimated to be <14 and 22%, respectively. We measured the gain of the VOR (eye velocity divided by head velocity) and the phase shift between eye and head velocity before and after adaptation with altered vision. Before adaptation, VOR gains were close to unity for frequencies ≤20 Hz and increased as a function of frequency reaching values of 3 or 4 at 50 Hz. Eye velocity was almost perfectly out of phase with head velocity for frequencies ≤12.5 Hz, and lagged perfect compensation increasingly as a function of frequency. After adaptive modification of the VOR with magnifying or miniaturizing optics, gain showed maximal changes at frequencies <12.5 Hz, smaller changes at higher frequencies, and no change at frequencies larger than 25 Hz. Between 15 and 25 Hz, the phase of eye velocity led the unmodified VOR by as much as 50° when the gain of the VOR had been decreased, and lagged when the gain of the VOR had been increased. We were able to reproduce the main features of our data with a two-pathway model of the VOR, where the two pathways had different relationships between phase shift and frequency.


Sign in / Sign up

Export Citation Format

Share Document