scholarly journals The investigation of the cranberry (Vaccinium oxycoccos L.) concentrated juice antimicrobial activity

2018 ◽  
pp. 84-92
Author(s):  
K. M. Yatsiuk ◽  
M. I. Feodorovska ◽  
R. V. Kutsyk

The urinary system infections is one of the most common diseases of the genitourinary system in women. Of particular interest in the prevention and treatment of chronic cystitis is the consumption of the cranberry (Vaccinium oxycoccos L.) fruits. This plant has long been used in urological practice due to the content of proantocianidins, flavonoids, organic acids (benzoic, citric, quinic, ursolic), pectin substances, vitamins, microelements etc. Numerous clinical studies (including randomized, double-blind, placebo-controlled) reveal statistically reliable efficiency of cranberry juice in the forms of concentrates, cocktails and capsules to urinary system infections prevention in women. Since the main pathogens of urinary system infections are Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, the aim of our work was to study the antimicrobial properties of the cranberry concentrated juice. Comparative testing of antimicrobial activity was performed using micromethod of diffusion in agar. The carried out study indicates that the concentrated juice maintains antimicrobial properties to the most common uropathogenic microorganisms. Effective antimicrobial concentration was found according with analysis of microbial cultures growth curves in a nutrient medium with various juice dilutions. Gram-positive bacteria (S. aureus, E. faecalis) are more sensitive to the cranberry concentrated juice than gram-negative (E. coli and P. aeruginosa). The adhere ability to a solid surface with the subsequent formation of biofilm is an important factor in the uropathogenic bacteria virulence. Therefore, the next step was to study the effect of cranberry juice biologically active compounds on the biofilms formation in the uropathogenic bacteria broth cultures. It was determined that cranberry juice suppresses the biofilm formation of S. aureus with the greatest intensity. It was observed the 45,3–55,8% reduction of the biofilm creating intensity in the presence of the condensed juice subbacteriostatic dilutions. When the condensed juice was diluted as 1:160, inhibition of E. faecalis biofilm formation ability on 44,90% was detected. The effect of cranberry biologically active compounds on the biofilms formation by gram-negative bacteria was observed in the range of 20%. Thus, the obtained cranberry concentrated juice can be recommended as the remedy for application in prevention of recurrent urinary system infections.

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Zita Puterová ◽  
Alžbeta Krutošíková ◽  
Daniel Végh

Highly substituted thiophene derivatives are important heterocycles found in numerous biologically active compounds. Title compounds are attractive derivatives because their applications in pharmaceuticals, agriculture and pesticides. They exhibit antimicrobial activity against various Gram(+) and Gram(-) bacteria and fungi. Many of these molecules act as allosteric enhancers of A1-adenosine receptor, glucagon antagonists as well as antioxidant and anti-inflammatory agents.


2019 ◽  
Vol 15 ◽  
pp. 2782-2789 ◽  
Author(s):  
Tian Cheng ◽  
Clara Chepkirui ◽  
Cony Decock ◽  
Josphat C Matasyoh ◽  
Marc Stadler

During the course of screening for new metabolites from basidiomycetes, we isolated and characterized five previously undescribed secondary metabolites, skeletocutins M–Q (1–5), along with the known metabolite tyromycin A (6) from the fruiting bodies of the polypore Skeletocutis sp. The new compounds did not exhibit any antimicrobial, cytotoxic, or nematicidal activities. However, compound 3 moderately inhibited the biofilm formation of Staphylococcus aureus (S. aureus), while compounds 3 and 4 performed moderately in the ʟ-leucine-7-amido-4-methylcoumarin (ʟ-Leu-AMC) inhibition assay. These compounds represent the first secondary metabolites reported to occur in the fruiting bodies by Skeletocutis. Interestingly, tyromycin A (6) was found to be the only common metabolite in fruiting bodies and mycelial cultures of the fungus, and none of the recently reported skeletocutins from the culture of the same strain were detected in the basidiomes.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2018 ◽  
Author(s):  
Honggui Lv ◽  
Li-Jun Xiao ◽  
Dongbing Zhao ◽  
Qi-Lin Zhou

Herein, we realized the first linear-selective hydroarylation of unactivated alkenes and styrenes with organoboronic acids by introducing directing groupon alkenes. Our method is highly efficient and scalable, and provides a modular route to assemble structurally diverse alkylarenes, especially for γ-aryl butyric acid derivatives, which have been widely utilized as chemical feedstocks to access multiple marketed drugs, and biologically active compounds.<br>


2020 ◽  
Vol 5 (443) ◽  
pp. 85-91
Author(s):  
Ibrayev M.K., ◽  
◽  
Takibayeva A.T., ◽  
Fazylov S.D., ◽  
Rakhimberlinova Zh.B., ◽  
...  

This article presents studies on the targeted search for new derivatives of azoles, such as benzthiazole, 3,5-dimethylpyrazole, 1,3,4-oxadiazole-2-thione, 1,3,4-thiadiazole. The possibility of combining in one molecule of the azole ring with other cyclic compounds: the alkaloid cytisine, morpholine, furan and some arenes has been studied. To obtain new compounds, the reactions of bromination, acylation, and interaction with isothiocyanates were studied. Optimal synthesis conditions were studied for all reactions. It was found that the reaction of 4-bromo-3,5-dimethylpyrazole with isothiocyanates, in contrast to the previously written derivatives of anilines, takes a longer time and requires heating the reaction mixture. The combination of a pirasol fragment with halide substituents often results in an enhanced therapeutic effect. The synthesized 2-bromine-N-(6-rodanbenzo[d]thiazole-2-yl)acetamide, due to the alkylbromide group, is an important synth in the synthesis of new benzthiazole derivatives. Its derivatives combine in one molecule the rest of rhodanbenzthiazole with alkaloid cytisine and biogenic amine morpholine and are potentially biologically active compounds, since the molecule structure contains several pharmacophoric fragments: benzthiazole and alkaloid (amine) heterocycles, rhodane and urea groups. The mechanism of formation of 1,3,4-oxadiazole-2-tyons from hydrazides under action on them by carbon disulfide was studied and assumed. It was shown that dithiocarbamates in acidic medium decompose with the release of hydrogen sulfide and the formation of highly reactive isothiocyanate group. Then, intra-molecular cyclization occurs, with the formation of end products - 1,3,4-oxadiazole-2-thions. The structures of the synthesized compounds were studied by 1H and 13C NMR spectroscopy. All synthesized substances are potentially biologically active compounds, since they contain several pharmacophore fragments in their structure.


2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Author(s):  
Neha V. Bhilare ◽  
Pratibha B. Auti ◽  
Vinayak S. Marulkar ◽  
Vilas J. Pise

: Thiophenes are one among the abundantly found heterocyclic ring systems in many biologically active compounds. Moreover various substituted thiophenes exert numerous pharmacological actions on account of their isosteric resemblance with compounds of natural origin thus rendering them with diverse actions like antibacterial, antifungal, antiviral, anti-inflammatory, analgesic, antiallergic, hypotensives etc.. In this review we specifically explore the chemotherapeutic potential of variety of structures consisting of thiophene scaffolds as prospective anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document