scholarly journals STRUCTURE AND DIELECTRIC PROPERTIES OF NANOCOMPOSITES: OPAL MATRIX - TITANIUM OXIDE AND RARE-EARTH TITANATES

Author(s):  
M. I. Samoylovich ◽  
А. F. Belyanin ◽  
A. S. Bagdasaryan ◽  
V. .. Bovtun

The conditions for the formation of nanocomposites based on the basis of lattice packings SiO2 nanospheres (opal matrices) with included clusters of crystalline phase of titanium oxide (TiO2 and TiO) and rare-earth titanates of the general formula R2TiO5 or R2Ti2O7, where R - Er, Dy, Gd, Pr, Tb and Yb in interspherical nanospacing are considered. The composition and structure of the nanocomposites studied electron microscopy, X-ray diffraction and Raman spectroscopy. Results of measuring of the frequency dependences of real and imaginary components of the permittivity and microwave conductivity (ranging 10-2-1012 Hz) obtained nanostructures are viewed.

Author(s):  
M. I. Samoylovich ◽  
А. F. Belyanin ◽  
A. S. Bagdasaryan

The article considers specific features of the formation of nanocomposites based on the lattice packing of SiO2 nanospheres (opal matrices) with clusters of titanium and iron compounds (FeTiO3, FeTi2O5, TiO2, Fe2O3) embedded into nanopores between spheres. For the formation of the nanocomposites samples of opal matrices with the sizes of single-domain regions > 0.1 mm3 were used. The diameter of the SiO2 nanospheres was ~260 nm. Nanocomposites with the volume > 1 cm3 and 10-15% of interspherical nanospacing filled by crystallites of titanium and iron compounds were obtained. The composition and structure of the nanocomposites were studied by electron microscopy, X-ray diffraction and Raman spectroscopy. The dependence of the composition of the synthesized materials on the conditions of their preparation is shown. Results of measurements of the frequency dependences (within the range 1 MHz - 3 GHz) of the magnetic and dielectric characteristics of the obtained nanostructures are presented. Hysteresis loops were studied for the obtained samples.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2014 ◽  
Vol 10 ◽  
pp. 1613-1619 ◽  
Author(s):  
Simon Rondeau-Gagné ◽  
Jules Roméo Néabo ◽  
Maxime Daigle ◽  
Katy Cantin ◽  
Jean-François Morin

The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM).


2019 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Bilal Abu Sal

This work is devoted to generalize and analyze the previouse results of new photonic-crystalline nanomaterials based on synthetic opals and active dielectrics. Data were characterized by X-ray diffraction and Raman spectroscopy. Active dielectrics infiltrated into the pores of the opal from the melt. The phase structure composition of the infiltrated materials into the pores of the opal matrix were analyzed. The results of x-ray diffraction and Raman spectra allowed to establish the crystal state of active dielectrics in the pores of the opal. The Raman spectra of some opal-active dielectric nanocomposites revealed new bands and changes in band intensities compared to the spectra of single crystals of active dielectrics. Further more, differences in band intensities in the spectra were measured at different spots of the sample‘s surface were observed. The revealed changes were attributed to the formation of new crystalline phases due to the injected dielectrics in opal pores.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4171 ◽  
Author(s):  
Paweł Rutkowski ◽  
Jan Huebner ◽  
Adrian Graboś ◽  
Dariusz Kata ◽  
Dariusz Grzybek ◽  
...  

In this study, the influence of the addition of rare earth oxides on the phase composition and density of KNN piezoelectric ceramics was investigated. The initial powders of Na2CO3 and K2CO3 were dried at 150 °C for 2 h. Then, a powder mixture for synthesis was prepared by adding a stoichiometric amount of Nb2O5 and 5 and 10 wt % overabundance of Na2CO3. All powders were mixed by ball-milling for 24 h and synthesized at 950 °C. The phase composition of the reaction bed was checked by means of X-ray diffraction (XRD). It had an appearance of tetragonal and monoclinic K0.5Na0.5NbO3 (KNN) phases. Then, 1 and 2 wt % of Er2O3 and Yb2O3, were added to the mixture. Green samples of 25 mm diameter and 3 mm thickness were prepared and sintered by hot pressing at 1000 °C for 2 h under 25 MPa pressure. The final samples were investigated via scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS), XRD, Rietveld, and ultrasonic methods. Phase analysis showed tetragonal and orthorhombic KNN phases, and a contamination of (K2CO3·1.5H2O) was present. The obtained KNN polycrystals had a relative density above 95%. Texturing of the material was confirmed as a result of hot pressing.


2013 ◽  
Vol 421 ◽  
pp. 401-405
Author(s):  
Sang An Ha ◽  
Jei Pil Wang

The oxidation behavior of steel and pure copper has been investigated in the temperature range of 500-700°C at various oxygen pressures. The rate of oxidation was measured using thermal gravimetric apparatus (TGA). The morphology, composition and structure of the oxide scale were determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).


1996 ◽  
Vol 11 (12) ◽  
pp. 3146-3151 ◽  
Author(s):  
E. Czerwosz ◽  
P. Byszewski ◽  
R. Diduszko ◽  
H. Wronka ◽  
P. Dluźewski ◽  
...  

C60/C70: Ni films with 1.5 wt. % Ni concentration obtained by vacuum deposition under different thermal conditions have been investigated. The structural changes of the layers were investigated by transmission electron microscopy, electron and x-ray diffraction, and Raman spectroscopy. The polycrystalline structure was detected for the layers grown at approximately 450 K on the substrate. At elevated temperature and maintained temperature gradient on the substrate during the process, the changes of the layer's structure and the formation of Ni microcrystals were observed. The Ni microcrystals (5–10 nm in the diameter) and the elongated shapes dimensioned 10 × 150 nm were perceived.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


2004 ◽  
Vol 836 ◽  
Author(s):  
S. L. Wang ◽  
S. H. Lee ◽  
A. Gupta ◽  
A. D. Compaan

ABSTRACTCd1-xMnxTe alloy films with band gaps of 1.6 ∼ 1.8 eV have been deposited by RF magnetron sputtering for solar-cell applications. The films have been treated by chloride vapors to improve the photovoltaic performance. These as-deposited and chloride-treated CdMnTe films have been investigated by Raman spectroscopy, x-ray diffraction (XRD) and scanning electron microscopy (SEM). Raman results indicate that Te and/or TeO2 exists in the annealed samples depending on anneal conditions.


Sign in / Sign up

Export Citation Format

Share Document