scholarly journals DETECTION OF HYDROPEROXIDES IN SOLUTIONS OF PHOTOOXIDIZED PSORALEN

Author(s):  
V. V. Skarga ◽  
E. V. Nevezhin ◽  
A. А. Matrosov ◽  
V. V. Negrebetsky ◽  
M. V. Malakhov

Photooxidized psoralen solutions possess a variety of biological effects, which implementation mechanism may presumably involve hydroperoxides. Here, the hydroperoxide content in photooxidized psoralen solutions was assessed using photometric FOX assay (from Ferrous Oxidation + Xylenol Orange). FOX reagent with 10× content of Xylenol Orange, modified for quantitative analysis of up to 50 μM of hydroperoxides in aqueous phase was used in experiments. During photooxidation of 0.1 mM psoralen in phosphate buffer solution, hydroperoxide production increases with dose of UVA irradiation (~2.5 μM eq. of H2O2 for dose of 252 kJ/m2 and ~11 μM eq. of H2O2 for dose of 1512 kJ/m2) and reaches ~16.5 μM eq. of H2O2 at the highest dose investigated (3024 kJ/m2). A comparison of kinetics of psoralen photolysis and hydroperoxide generation allows us to suggest that generation of hydroperoxide results from the secondary photochemical processes involving psoralen photoproducts, presumably from photoinduced autooxidation of aldehydic photoproducts of psoralen.

2011 ◽  
Vol 284-286 ◽  
pp. 1764-1769 ◽  
Author(s):  
Vitalijs Lakevics ◽  
Janis Locs ◽  
Dagnija Loca ◽  
Valentina Stepanova ◽  
Liga Berzina-Cimdina ◽  
...  

Sorption experiments of bovine serum albumin (BSA) on hydroxyapatite (HAp) ceramic granules, prepared at three temperatures 900°C, 1000°C and 1150°C were performed at room temperature 18,6 °C and phosphate buffer, pH 5,83; 6.38 and 7,39. Thermal treatment contributed to the decrease of bovine serum albumin immobilization indicating that sorption process depended on HAp ceramics specific surface area and pH values of phosphate buffer solution. However, it was confirmed that granule size was also an important parameter for bovine serum albumin adsorption. As a result of these experiments, the most appropriate adsorption conditions and phosphate buffer pH values influence on to BSA sorption were analyzed.


2000 ◽  
Vol 63 (6) ◽  
pp. 703-708 ◽  
Author(s):  
MARCY A. WISNIEWSKY ◽  
BONITA A. GLATZ ◽  
MARK L. GLEASON ◽  
CHERYLL A. REITMEIER

The objectives of this study were to determine if washing of whole apples with solutions of three different sanitizers (peroxyacetic acid, chlorine dioxide, or a chlorine-phosphate buffer solution) could reduce a contaminating nonpathogenic Escherichia coli O157:H7 population by 5 logs and at what sanitizer concentration and wash time such a reduction could be achieved. Sanitizers were tested at 1, 2, 4, 8, and 16 times the manufacturer's recommended concentration at wash times of 5, 10, and 15 min. Whole, sound Braeburn apples were inoculated with approximately 1 × 108 or 7 × 106 CFU per apple, stored for 24 h, then washed with sterile water (control) or with sanitizers for the prescribed time. Recovered bacteria were enumerated on trypticase soy agar. Washing with water alone reduced the recoverable population by almost 2 logs from the starting population; this can be attributed to physical removal of organisms from the apple surface. No sanitizer, when used at the recommended concentration, reduced the recovered E. coli population by 5 logs under the test conditions. The most effective sanitizer, peroxyacetic acid, achieved a 5-log reduction when used at 2.1 to 14 times its recommended concentration, depending on the length of the wash time. The chlorine-phosphate buffer solution reduced the population by 5 logs when used at 3 to 15 times its recommended concentration, depending on wash time. At no concentration or wash time tested did chlorine dioxide achieve the 5-log reduction.


Author(s):  
Blanca Teresa Perez-Maceda ◽  
María Encarnación López-Fernández ◽  
Iván Díaz ◽  
Aaron kavanaugh ◽  
Fabrizio Billi ◽  
...  

Macrophages are cells involved in the primary response to debris derived from wear of implanted CoCr alloys. The biocompatibility of wear particles from a high carbon CoCr alloy produced under polarization in physiological hyaluronic acid (HA) solution was evaluated in J774A.1 mouse macrophages cultures. Polarization was applied to mimic the electrical interactions observed in living tissues. Wear tests were performed in a pin-on-disk tribometer integrating an electrochemical cell in phosphate buffer solution (PBS) and in PBS supplemented with 0.3% HA, physiological synovial fluid concentration, used as lubricant solution. Wear particles produced in 0.3% HA solution showed a higher biocompatibility in J774A.1 macrophages in comparison to those elicited by PBS. A considerable improvement in macrophages biocompatibility in the presence of 0.3 % of HA was further observed by the application of polarization at potentials having current densities typical of injured tissues suggesting that polarization produces an effect on the surface of the metallic material that leads to the production of wear particles that are macrophages biocompatible and less cytotoxic. The results showed the convenience to consider electric interactions together with other particles parameters, as are size and composition, to get a better understanding of the biological effects of the wear products.


2018 ◽  
Vol 10 (11) ◽  
pp. 1362-1371 ◽  
Author(s):  
Mallappa Mahanthappa ◽  
Nagaraju Kottam ◽  
Shivaraj Yellappa

The simultaneous electroanalysis of acetaminophen (AC), guanine (G) and adenine (A) was successfully achieved on the zinc sulphide nanoparticles-modified carbon paste electrode (ZnS NPs/CPE) in phosphate buffer solution (PBS).


Author(s):  
Amitava Dutta ◽  
Apurba Kumar Santra ◽  
Ranjan Ganguly

Abstract We present a detailed numerical analysis of electrophoresis induced concentration of a bio-analyte facilitated by temperature gradient focusing in a phosphate buffer solution via Joule heating inside a converging-diverging microchannel. The purpose is to study the effects of frequency of AC field and channel width variation on the concentration of target analyte. We tune the buffer viscosity, conductivity and electrophoretic mobility of the analyte such that the electrophoretic velocity of the analyte locally balances the electroosmotic flow of the buffer, resulting in a local build-up of the analyte concentration in a target region. An AC field is superimposed on the applied DC field within the microchannel in such a way that the back pressure effect is minimized, resulting in minimum dispersion and high concentration of the target analyte. Axial transport of fluorescein-Na in the phosphate buffer solution is controlled by inducing temperature gradient through Joule heating. The technique leverages the fact that the buffer's ionic strength and viscosity depends on temperature, which in turn guides the analyte transport. A numerical model is proposed and a finite element-based solution of the coupled electric field, mass, momentum, energy and species equations are carried out. Simulation predict peak of 670-fold concentration of fluorescein-Na is achieved. The peak concentration is found to increase sharply as the channel throat width, while the axial spread of concentrated analyte increases at lower frequency of AC field. The results of the work may improve the design of micro concentrator.


Sign in / Sign up

Export Citation Format

Share Document