Deleted In Lymphocytic Leukemia 2 Non-Protein Coding RNA

2020 ◽  
Author(s):  
MicroRNA ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Rabih Roufayel ◽  
Seifedine kadry

Background: Signaling pathways including gene silencing, cellular differentiation, homeostasis, development and apoptosis are regulated and controlled by a wide range of miRNAs. Objective: Due to their potential binding sites in human-protein coding genes, many studies have also linked their altered expressions in various cancer types making them tumor suppressors agents. Methods: Moreover, each miRNA is predicted to have many mRNA targets indicating their extensive regulatory role in cell survival and developmental processes. Nowadays, diagnosis of early cancer stage development is now dependent on variable miRNA expression levels as potential oncogenic biomarkers in validating and targeting microRNAs for cancer therapy. Results: As the majority of miRNA, transcripts are derived from RNA polymerase II-directed transcription, stress response could result on a general reduction in the abundance of these transcripts. Over expression of various microRNAs have lead to B cell malignancy, potentiated KrasG12Dinduced lung tumorigenesis, chronic lymphocytic leukemia, lymphoproliferative disease and autoimmunity. Conclusion: Altered miRNA expressions could have a significant impact on the abundance of proteins, making them attractive candidates as biomarkers for cancer detection and important regulators of apoptosis.


Blood ◽  
2009 ◽  
Vol 114 (23) ◽  
pp. 4761-4770 ◽  
Author(s):  
George A. Calin ◽  
Carlo M. Croce

Abstract One of the most unexpected and fascinating discoveries in oncology over the past few years is the interplay between abnormalities in protein-coding genes and noncoding RNAs (ncRNAs) that is causally involved in cancer initiation, progression, and dissemination. MicroRNAs (miRNAs), small regulatory ncRNAs, are involved in the pathogenesis of all types of human cancers, including leukemias, mainly via dysregulation of expression of cancer genes. Increasing evidence shows that miRNAs can work as tumor suppressors (inhibiting malignant potential) or oncogenes (activating malignant potential). Researchers first identified this new paradigm of molecular oncology in patients with chronic lymphocytic leukemia (CLL). Understanding the roles of miRNAs and other ncRNAs in leukemic cells is not only uncovering a new layer of gene regulation but also providing new markers for improved diagnosis and prognosis, as well as novel therapeutic options for CLL patients. Herein we focus on the roles of miRNAs and ultraconserved ncRNA genes in CLL, highlighting what is already known about their function, proposing a novel model of CLL predisposition and progression, and describing the challenges for the near future.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2705-2705 ◽  
Author(s):  
Lara Rizzotto ◽  
Arianna Bottoni ◽  
Tzung-Huei Lai ◽  
Chaomei Liu ◽  
Pearlly S Yan ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) follows a variable clinical course mostly dependent upon genomic factors, with a subset of patients having low risk disease and others displaying rapid progression associated with clonal evolution. Epigenetic mechanisms such as DNA promoter hypermethylation were shown to have a role in CLL evolution where the acquisition of increasingly heterogeneous DNA methylation patters occurred in conjunction with clonal evolution of genetic aberrations and was associated with disease progression. However the role of epigenetic mechanisms regulated by the histone deacetylase group of transcriptional repressors in the progression of CLL has not been well characterized. The histone deacetylases (HDACs) 1 and 2 are recruited onto gene promoters and form a complex with the histone demethylase KDM1. Once recruited, the complex mediate the removal of acetyl groups from specific lysines on histones (H3K9 and H3K14) thus triggering the demethylation of lysine 4 (H3K4me3) and the silencing of gene expression. CLL is characterized by the dysregulation of numerous coding and non coding genes, many of which have key roles in regulating the survival or progression of CLL. For instance, our group showed that the levels of HDAC1 were elevated in high risk as compared to low risk CLL or normal lymphocytes and this over-expression was responsible for the silencing of miR-106b, mR-15, miR-16, and miR-29b which affected CLL survival by modulating the expression of key anti-apoptotic proteins Bcl-2 and Mcl-1. To characterize the HDAC-repressed gene signature in high risk CLL, we conducted chromatin immunoprecipitation (ChIP) of the nuclear lysates from 3 high risk and 3 low risk CLL patients using antibodies against HDAC1, HDAC2 and KDM1 or non-specific IgG, sequenced and aligned the eluted DNA to a reference genome and determined the binding of HDAC1, HDAC2 and KDM1 at the promoters for all protein coding and microRNA genes. Preliminary results from this ChIP-seq showed a strong recruitment of HDAC1, HDAC2 and KDM1 to the promoters of several microRNA as well as protein coding genes in high risk CLL. To further corroborate these data we performed ChIP-Seq in the same 6 CLL samples to analyze the levels of H3K4me2 and H3K4me3 around gene promoters before and after 6h exposure to the HDACi panobinostat. Our goal was to demonstrate that HDAC inhibition elicited an increase in the levels of acetylation on histones and triggered the accrual of H3K4me2 at the repressed promoter, events likely to facilitate the recruitment of RNA polymerase II to this promoter. Initial analysis confirmed a robust accumulation of H3K4me2 and H3K4me3 marks at the gene promoters of representative genes that recruited HDAC1 and its co-repressors in the previous ChIP-Seq analysis in high risk CLL patients. Finally, 5 aggressive CLL samples were treated with the HDACi abexinostat for 48h and RNA before and after treatment was subjected to RNA-seq for small and large RNA to confirm that the regions of chromatin uncoiled by HDACi treatment were actively transcribed. HDAC inhibition induced the expression of a large number of miRNA genes as well as key protein coding genes, such as miR-29b, miR-210, miR-182, miR-183, miR-95, miR-940, FOXO3, EBF1 and BCL2L11. Of note, some of the predicted or validated targets of the induced miRNAs were key facilitators in the progression of CLL, such as BTK, SYK, MCL-1, BCL-2, TCL1, and ROR1. Moreover, RNA-seq showed that the expression of these protein coding genes was reduced by 2-33 folds upon HDAC inhibition. We plan to extend the RNA-seq to 5 CLL samples with indolent disease and combine all the data to identify a common signature of protein coding and miRNA genes that recruited the HDAC1 complex, accumulated activating histone modifications upon treatment with HDACi and altered gene and miRNA expression after HDAC inhibition in high risk CLL versus low risk CLL. The signature will be than validated on a large cohort of indolent and aggressive CLL patients. Our final goal is to define a signature of coding and non coding genes silenced by HDACs in high risk CLL and its role in facilitating disease progression. Disclosures Woyach: Acerta: Research Funding; Karyopharm: Research Funding; Morphosys: Research Funding.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 436-436 ◽  
Author(s):  
Christopher J. Ott ◽  
Alexander J. Federation ◽  
Siddha Kasar ◽  
Josephine L. Klitgaard ◽  
Stacey M. Fernandes ◽  
...  

Abstract Genome sequencing efforts of chronic lymphocytic leukemia have revealed mutations that disrupt protein-coding elements of the genome (Puente et al, 2011; Wang et al, 2011; Landau et al, 2013). Recently, comprehensive whole-genome sequencing efforts have begun to reveal the genetic aberrations that occur outside of protein-coding exons, many that may perturb gene regulatory sites (Puente et al, 2015). These include enhancer elements that make physical contact with gene promoters to regulate gene expression in a cell-type specific manner. While mutations certainly promote CLL leukemogenesis, epigenomic alterations may also play an important role in facilitating disease progression and maintenance by inducing the gene expression aberrations that have long been observed in CLL. Epigenomic alterations include chromatin structure changes that facilitate altered transcription and chromatin factor recruitment to regulatory elements. While comprehensive genome-wide DNA methylation studies have been performed on human cancers and normal cell counterparts including CLL, other comprehensive studies of cancer epigenomes have been lacking. We have completed an analysis of chromatin structures in a cohort of primary chronic lymphocytic leukemia (CLL) samples with comparisons to normal CD19+ B lymphocytes (n = 18 CLL samples, n = 5 normal B lymphocyte samples). We used chromatin accessibility assays (ATAC-seq) and genome-wide enhancer mapping (H3K27ac ChIP-seq) to comprehensively define the transcriptionally active chromatin landscape of CLL. We have discovered greater than 15,000 novel regulatory elements when compared to previously annotated regulatory elements. Moreover, sites within the loci of several hundred genes were found to have large regions of gained chromatin accessibility and H3K27 acetylation, revealing the appearance of aberrant enhancer activity. These gained enhancer elements correspond with increased gene expression and are found at gene loci such as LEF1, PLCG1, CTLA4, and ITGB1. We have also systematically identified the super-enhancers of CLL - large complex regulatory regions that possess unique tissue-specific regulatory capabilities. Many of these super-enhancers are found in normal B lymphocytes, yet the super-enhancer at the ITGB1 and LEF1 loci are CLL-specific and may be considered to facilitate leukemia-specific expression. We have found CLL-specific enhancers are also significantly associated with annotated CLL risk variants, and have identified enhancer-associated SNPs found within CLL-risk loci predicted to disrupt transcription factor binding sites. These include SNPs at the IRF8 and LEF1 locithat lead to the creation and destruction of SMAD4 and RXRA binding sites, respectively. Additionally, we have analyzed whole-genome sequencing data from a subset of our sample cohort. Mutational hotspots in the CXCR4 and BACH2 promoters occur within open, acetylated regions. Moreover, we discover recurrent mutations in enhancers of the ETS1 and ST6GAL1 locus that have not been previously annotated. Using a transcription factor network modeling approach, we used these global chromatin structure characteristics to determine networks that are highly active in CLL. We find that transcription factors such as NFATc1, E2F5, and NR3C2 are among the most interconnected transcription factors of the CLL genome, and their connectivity is significantly higher in CLL cells compared to normal B cells. In contrast, network profiling of CLL cells predicts loss of MXI1 connectivity, a negative regulator of the MYC oncogene. By treating cells with specific pharmacological inhibitors of NFAT family members including cyclosporin and FK506, we are able to reduce NFAT-mediated network connectivity, resulting in a selective loss of NFAT-bound enhancers. This leads to CLL cell death in vitro of both cell lines and primary CLL patient samples. Our results reveal the unique chromatin structure landscape of CLL for the first time, and identify the CLL-specific enhancer elements that confer the transcriptional dysregulation that has long been observed in this disease. Use of these chromatin structure analyses and enhancer landscapes has allowed us to construct the intrinsic transcription factor network of CLL, and determine a particular dependency on NFAT signaling for cell survival. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Tamara Ouspenskaia ◽  
Travis Law ◽  
Karl R. Clauser ◽  
Susan Klaeger ◽  
Siranush Sarkizova ◽  
...  

AbstractTumor epitopes – peptides that are presented on surface-bound MHC I proteins - provide targets for cancer immunotherapy and have been identified extensively in the annotated protein-coding regions of the genome. Motivated by the recent discovery of translated novel unannotated open reading frames (nuORFs) using ribosome profiling (Ribo-seq), we hypothesized that cancer-associated processes could generate nuORFs that can serve as a new source of tumor antigens that harbor somatic mutations or show tumor-specific expression. To identify cancer-specific nuORFs, we generated Ribo-seq profiles for 29 malignant and healthy samples, developed a sensitive analytic approach for hierarchical ORF prediction, and constructed a high-confidence database of translated nuORFs across tissues. Peptides from 3,555 unique translated nuORFs were presented on MHC I, based on analysis of an extensive dataset of MHC I-bound peptides detected by mass spectrometry, with >20-fold more nuORF peptides detected in the MHC I immunopeptidomes compared to whole proteomes. We further detected somatic mutations in nuORFs of cancer samples and identified nuORFs with tumor-specific translation in melanoma, chronic lymphocytic leukemia and glioblastoma. NuORFs thus expand the pool of MHC I-presented, tumor-specific peptides, targetable by immunotherapies.


2021 ◽  
Vol 15 ◽  
pp. 16-29
Author(s):  
Simay Dolaner ◽  
Harpreet Kaur ◽  
Elia Brodsky ◽  
Julia Panov ◽  
Mohit Mazumder

Chronic Lymphocytic Leukemia (CLL) is one kind of blood cancer that has a very heterogeneous biological background, which results in diverse stages of the CLL and complex treatment strategies. However, a small part of the tumor may disappear without receiving any treatment. This condition is known as “spontaneous regression” and occurs as a result of a poorly investigated mechanism. Exposing the underlying causes of this condition can lead to a novel treatment approach for CLL and other types of cancer. While most such mechanisms have been assumed to be directly linked to protein coding genes, a recent approach was aimed to carry out more comprehensive studies by focusing on non-protein coding genes as well as protein-coding genes at the RNA level. In this article, we applied in-silico analysis of total RNA expression data from 24 CLL samples to determine possible regulatory mechanisms of spontaneous regression in CLL. These were selected by comparing spontaneous regression with progressive samples of CLL at the transcriptional level. As a result, 33 lncRNAs were found to be significantly differentially expressed among these conditions based on differential gene expression analysis. Current study suggested lncRNAs, PTPN22-AS1, PCF11-AS1, SYNGAP1-AS1, PRRT3-AS1 and H1FX-AS1 as potential therapeutic targets to trigger spontaneous regression. Eventually, the results presented here reveal new insights into the spontaneous regression and the relation with the non-coding RNAs, particularly lncRNAs.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4152-4152
Author(s):  
Rozovski Uri ◽  
George Calin ◽  
Tetsoro Setoyama ◽  
Abundu Lucilla ◽  
Harris David ◽  
...  

Abstract MicroRNA (miR) deregulation is a hallmark of chronic lymphocytic leukemia (CLL). However, little is known about the mechanisms of miR gene transcription. In CLL, signal transducer and activator of transcription 3 (STAT3) is constitutively phosphorylated on serine 727 residues, and phosphoserine STAT3 activates protein-coding genes known to be induced by phosphotyrosine STAT3. Therefore, we sought to determine whether phosphoserine STAT3 also activates miR genes. Because an analysis of publically available data, revealed that STAT3 binds to the promoter of nearly 25% of all human miR genes, we transfected unstimulated CLL cells with STAT3 small hairpin (sh)-RNA. Using an RNA microarray, we found that STAT3-shRNA downregulated the levels of 63 miR genes and upregulated the levels of 9 miR genes. Using qRT-PCR, we confirmed the microarray results in 5 of the 6 differentially expressed miR genes. Together, these data suggested that STAT3 affects miR gene levels. An analysis of chromatin immunoprecipitation followed by sequencing (ChIP-seq) data revealed STAT3-miR promoter binding sites in only 60% of the STAT3-regulated miR genes. This suggested to us that mechanisms unrelated to miR promoter binding are involved in the STAT3-mediated regulation of miR expression. Indeed, computer simulation of complementary binding of STAT3-targeted microRNA genes to STAT3 mRNA provided indirect evidence that STAT3 mRNA acts as a “sponge”, soaking up miRs and altering their level and function. Several miRs that are downregulated by STAT3-shRNA, including miR-15, miR-16, miR-21, and miR-155, play crucial roles in CLL pathobiology. In particular, miR-155 is involved in tumorigenesis, and its overexpression induces lymphoma in mice; also, CLL has a high expression level of miR-155. Therefore, we sought to confirm that STAT3 directly regulates the transcription of miR-155 in CLL cells. Electrophoretic mobility shift assay analysis revealed that STAT3 bound to the miR-155 promoter in CLL cells, and ChIP analysis revealed that STAT3 bound the 700–709 bp but not the 615–624 bp in the miR-155 promoter. We then co-transfected MM1 cells with truncated miR-155 promoter constructs plus STAT3 small interfering (si)-RNA and found that the STAT3-siRNA reduced the luciferase activity of the construct harboring the 700–709 bp miR-155 promoter region. Taken together, our data suggest that STAT3 directly and indirectly deregulates miR gene levels in CLL. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 14 (2) ◽  
pp. 168
Author(s):  
Marcello Francesco Lingua ◽  
Giovanna Carrà ◽  
Beatrice Maffeo ◽  
Alessandro Morotti

For many years in the field of onco-hematology much attention has been given to mutations in protein-coding genes or to genetic alterations, including large chromosomal losses or rearrangements. Despite this, biological and clinical needs in this sector remain unmet. Therefore, it is not surprising that recent studies have shifted from coded to non-coded matter. The discovery of non-coding RNAs (ncRNAs) has influenced several aspects related to the treatment of cancer. In particular, in chronic lymphocytic leukemia (CLL) the knowledge of ncRNAs and their contextualization have led to the identification of new biomarkers used to follow the course of the disease, to the anticipation of mechanisms that support resistance and relapse, and to the selection of novel targeted treatment regimens. In this review, we will summarize the main ncRNAs discovered in CLL and the molecular mechanisms by which they are affected and how they influence the development and the progression of the disease.


Author(s):  
Manoj Raje ◽  
Karvita B. Ahluwalia

In Acute Lymphocytic Leukemia motility of lymphocytes is associated with dissemination of malignancy and establishment of metastatic foci. Normal and leukemic lymphocytes in circulation reach solid tissues where due to in adequate perfusion some cells get trapped among tissue spaces. Although normal lymphocytes reenter into circulation leukemic lymphocytes are thought to remain entrapped owing to reduced mobility and form secondary metastasis. Cell surface, transmembrane interactions, cytoskeleton and level of cell differentiation are implicated in lymphocyte mobility. An attempt has been made to correlate ultrastructural information with quantitative data obtained by Laser Doppler Velocimetry (LDV). TEM of normal & leukemic lymphocytes revealed heterogeneity in cell populations ranging from well differentiated (Fig. 1) to poorly differentiated cells (Fig. 2). Unlike other cells, surface extensions in differentiated lymphocytes appear to originate by extrusion of large vesicles in to extra cellular space (Fig. 3). This results in persistent unevenness on lymphocyte surface which occurs due to a phenomenon different from that producing surface extensions in other cells.


Sign in / Sign up

Export Citation Format

Share Document