scholarly journals Pengaruh Karakteristik Bijih pada Ekstraksi Nikel dari Bijih Limonit Indonesia menggunakan Pelindian Atmosferik

2021 ◽  
Vol 43 (1) ◽  
pp. 9
Author(s):  
Widi Astuti ◽  
Fika Rofiek Mufakhir ◽  
Fajar Nurjaman ◽  
Slamet Sumardi ◽  
Ulin Herlina ◽  
...  

AbstrakKebutuhan ekstraksi nikel dari bijih nikel laterit khususnya jenis bijih limonit dengan kadar nikel yang rendah sangat diperlukan karena kebutuhan nikel yang terus meningkat dengan adanya pengembangan kendaraan bermotor listrik berbasis baterai. Jenis dan karakteristik bijih laterit yang berbeda akan memberikan pengaruh pada hasil ekstraksi nikel. Pada penelitian ini dilakukan ekstraksi nikel dari bijih laterit jenis limonit yang berasal dari Pulau Halmahera (LH)) dan Pulau Sulawesi (LS) menggunakan pelindian atmosferik. Asam sulfat digunakan sebagai agen pelindian. Penelitian dilakukan untuk mengetahui pengaruh karakteristik bijih limonit (LH dan LS) pada berbagai variabel pelindian yaitu suhu (30oC, 50oC dan 80oC), konsentrasi asam sulfat (0,5M; 1M; dan 2M), waktu pelindian (15, 30, 60, 120, dan 240 menit), serta rasio bijih terhadap reagen pelindian (5, 10, dan 20% w/v) terhadap ekstraksi nikel dari bijih limonit. Hasil penelitian menunjukkan bahwa karakteristik bijih laterit sangat berpengaruh pada hasil pelindian dan persen rekoveri nikel. Nikel dari bijih LH yaitu jenis limonit dari Pulau Halmahera dapat diekstrak secara maksimal (100%) pada konsentrasi asam sulfat 0,5M, suhu 80oC, rasio bijih/larutan asam sulfat 10%, dan waktu pelindian 2 jam. Sedangkan persen ekstraksi nikel dari bijih LS yang terbesar adalah 95% yang diperoleh pada konsentrasi asam sulfat 2M, suhu 80oC, rasio bijih/larutan asam sulfat 5%, dan waktu pelindian 4 jam. AbstractNickel extraction from nickel laterite ores particularly low-grade limonite ore is needed along with the increase of nickel consumption on the development of battery electric vehicle. Types and characteristics of nickel laterite ores affect greatly on the nickel extraction from these ores. This research conducted the extraction of nickel from limonite ore from different areas i.e. Halmahera Island (LH) and Sulawesi Island (LS) using atmosferic leaching. Sulfuric acid (1M) was used as leaching reagent. Leaching processes were carried out for investigating the effects of limonite ore characteristics (LH and LS), leaching temperatures (30oC, 50oC dan 80oC), concentration of sulfuric acid (0.5M; 1M; 2M), leaching time (15, 30, 60, 120, and 240 minutes), and ratio of ore amount to volume of leaching reagent on the nickel extraction from limonite ores. Experimental results showed that ore characteristic affected greatly on the leaching result and nickel leaching recovery. Nickel from LH ore could be extracted maximum (100%) using sulfuric acid 0.5M, temperature of 80oC, and leaching time 120 minutes (2 hours). Whereas, the highest nickel extraction percentage from LS ore is 95% using sulfuric acid 2M, temperature of 80oC, and leaching time 240 minutes (4 hours).

2021 ◽  
Vol 16 (3) ◽  
pp. 393
Author(s):  
Syamsul Hidayat ◽  
Sri Yulianti ◽  
Dian Anggreini ◽  
Syamsul Bahtiar

Study of nickel leaching using sulfuric acid and phosphoric acid on the selectivity of low-grade laterite nickel ore under atmospheric conditions has been successfully carried out. In this study, the laterite nickel leaching process was carried out by varying the solution concentration and operating time. The concentrations of sulfuric acid and phosphoric acid solutions were varied at 5 M and 6 M concentrations, while the operating time was varied at 4 hours and 6 hours. For other operating conditions, it is kept constant with an operating temperature of 90 ℃, pulp density 15% w / v, particle size ≤ 200 mesh. After that, the analysis stage was carried out using an atomic absorption spectroscopy (AAS) tool to determine the nickel content in the sample. The results showed that the highest nickel recovery was obtained at the concentration of 5 M sulfuric acid solution of 2.60% and 5 M phosphoric acid of 2.59% with the optimum operating time at 4 hours of operating time.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 351 ◽  
Author(s):  
Robbie G. McDonald ◽  
Jian Li

The pressure oxidation of low-grade nickel sulfide concentrate with high iron sulfides content generates significant amounts of sulfuric acid that must be neutralized. This acid can be utilized to leach metal values from ores such as nickel laterites. The present study demonstrates the use of a low-grade nickel concentrate generated from Poseidon Nickel Mt Windarra ore to enable additional nickel and cobalt extraction from a Bulong Nickel Operation nickel laterite blend. The co-processing of these materials at 250 °C, with oxygen overpressure, using total pulp densities of 30% or 40% w/w, and a range of nickel concentrate to nickel laterite mass ratios between 0.30–0.53, yielded base metal extractions of 95% or greater. The final free acid range was between 21.5–58.5 g/L, which indicates that enough in situ sulfuric acid was generated during co-processing. The acid was shown from mineralogical analysis to be efficiently utilized to dissolve the laterite ore, which indicates that the primary iron hydrolysis product was hematite, while the aluminum-rich sodium alunite/jarosite phase that formed hosts approximately 5% of the hydrolyzed iron.


2013 ◽  
Vol 634-638 ◽  
pp. 3196-3200
Author(s):  
Kui Liu ◽  
Xue Mei Su

A ferruginous nickel laterite was leached by sulfuric acid at atmospheric pressure. Nickel extraction was largely dependent on sulfuric acid concentration and leaching temperature. Besides these two factors, leaching time and liquid/solid ratio also influenced cobalt extraction significantly. Nickel was easier to be extracted than cobalt. About 95% nickel and cobalt could be extracted when leaching with 5mol/L sulfuric acid for 2h at 100°C, and the acid consumption was 1.417kg H2SO4/kg dry ore.


2015 ◽  
Vol 1130 ◽  
pp. 251-254
Author(s):  
Widi Astuti ◽  
Tsuyoshi Hirajima ◽  
Keiko Sasaki ◽  
Naoko Okibe

Citric acid has been proved to be the most effective organic acid for nickel extraction from nickel lateritic ores. Citric acid can be produced from fungal metabolism by utilizing several types of carbon source as fungal nutrient. In the current experiment, production of metabolic citric acid from metabolism of Aspergillus niger by using corn starch as a carbon source was investigated. The application of the citric acid produced in the leaching of nickel from Indonesian saprolitic ore under atmospheric pressure was also conducted. The optimum citric acid concentration (i.e. around 0.05 M) can be produced by using 5% w/v of corn starch after 5 days incubation of A. niger, 30°C of temperature, shaker speed of 120 rpm, and 3% v/v of methanol as an additive. The metal leaching of Indonesian saprolitic ore was conducted using <75μm of ore particle size, 5% w/v of pulp density and 200 rpm of shaker speed at different leaching temperatures (30°C, 40°C, and 60°C). The results showed that the optimum nickel recovery (around 40%) can be reached after 3 days of leaching process at 40°C. It was also found that the use of metabolic citric acid was more effective for nickel leaching compared to the use of chemical citric acid at similar citric acid concentration (i.e. 0.05 M). It can be concluded that the metabolic citric acid produced from corn starch by A. niger will be an excellent leaching reagent for extracting nickel from low-grade Indonesian saprolitic ore.


2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Wahab Wahab ◽  
Erwin Anshari ◽  
Marwan Zam Mili ◽  
WD. Rizky Awaliah Nafiu ◽  
Muh. Nuzul Khaq ◽  
...  

Leaching at atmospheric pressure is one of the leaching methods of concern because it has several advantages, namely that it can process low-level nickel ore, can operate at temperatures >100 ⁰C at atmospheric pressure, and can be used in saprolite and limonite ores. In this research, nickel extraction from nickel laterite ore was carried out using sulfuric acid solution (H2SO4) as a leaching agent. The variables that were varied in the leaching process were temperature (30, 60, and 90 ⁰C), sulfuric acid concentration (0.2, 0.5, and 0.8 molar) and leaching time (30, 60, and 90 minutes). In this study, a 3-factor analysis of variance (ANOVA) was used to see the significance of the variable effects and the order of the most influential variables. In addition, leaching kinetics was studied by shrinking core models to determine rate determining step. The results showed that the increase in temperature, sulfuric acid and leaching time produced a higher percentage of extracted nickel. Based on the 3-factor ANOVA, the order of the most influential variables was obtained, namely temperature, acid concentration and leaching time. The kinetics analysis showed that rate determining step of leaching ore nickel laterite with H2SO4 solution on atmospheric pressure is controlled by diffusion through solid layer product.Keywords: analysis of variance; leaching; saprolit; limonitA B S T R A KLeaching pada tekanan atmosfer adalah salah satu metode pelindian yang menjadi perhatian karena memiliki beberapa keuntungan yaitu dapat mengolah bijih nikel kadar rendah, dapat beroperasi pada temperatur >100 ⁰C pada tekanan atmosfer serta dapat digunakan pada bijih saprolit dan limonit. Dalam penelitian ini, dilakukan ekstraksi nikel dari bijih nikel laterit menggunakan larutan asam sulfat (H2SO4) sebagai agen pelindi. Variabel yang divariasikan dalam proses pelindian yaitu temperatur (30, 60, dan 90 ⁰C), konsentrasi asam sulfat (0,2; 0,5; dan 0,8 molar) dan waktu pelindian (30, 60, dan 90 menit). Dalam penelitian ini digunakan analysis of variance (ANOVA) 3 faktor untuk melihat signifikansi variabel dan urutan variabel yang paling berpengaruh. Selain itu, dilakukan studi kinetika pelindian menggunakan shrinking core model untuk mengetahui pengendali laju reaksi. Hasil penelitian menunjukkan bahwa peningkatan variabel temperatur, konsentrasi asam sulfat dan waktu pelindian menyebabkan meningkatnya persen ekstraksi nikel. Berdasarkan hasil ANOVA 3 faktor diperoleh urutan variabel yang paling berpengaruh yaitu temperatur, konsentrasi asam dan waktu pelindian. Hasil analisis kinetika menunjukkan bahwa pengendali laju reaksi pelindian bijih nikel laterit menggunakan larutan H2SO4 pada tekanan atmosfer yaitu difusi melalui lapisan produk padat.Kata kunci: analysis of variance; pelindian; limonit; saprolit


Author(s):  
Bachir Zine ◽  
Khoudir Marouani ◽  
Mohamed Becherif ◽  
Said Yahmedi

Abstract:The autonomy of the Battery Electric Vehicle is a key point in the development and commercialization of this kind of vehicle. The requested autonomy is directly linked to the amount of the stored and remaining energy in the battery which is the State of Charge (SOC).This paper presents battery state of charge (SOC) estimation using coulomb counting method. So, the quantity of electric charge is calculated during the battery cycle of charge and discharge and compared to the estimated value based on the battery generic model. Also, experimental results are carried out in order to validate this study.


Sign in / Sign up

Export Citation Format

Share Document