scholarly journals Performance of BIPV modules under different climatic conditions

2019 ◽  
pp. 107-115 ◽  
Author(s):  
Juliana Goncalves ◽  
Twan Van Hooff ◽  
Dirk Saelens

Building integrated photovoltaic (BIPV) technology has gained attention as a solution to achieve low energy buildings. However, unlike conventional PV applications, BIPVs typically operate at non-optimal orientation, imposed by the building geometry. Moreover, the building integration reduces the heat exchange to the exterior, leading to higher temperatures. This paper investigates the performance of BIPV modules in different locations by simulating a representative office room in a high-rise building having a BIPV facade. The locations considered are Riyadh (Saudi Arabia), Seville (Spain), Naples (Florida, USA), Cape Town (South Africa), and Munich (Germany). The facade is vertical and faces the equator for all locations. Results show the highest annual BIPV energy yield occurs in Seville, followed by Cape Town, Riyadh, and Naples. In terms of monthly yields, the highest values are observed in Riyadh and Seville in wintertime. Monthly yield is more uniform over the year in Munich, while important differences between summer and winter have been obtained for Riyadh. These results confirm the influence of the latitude on the BIPV yield, with equator-facing facades in high latitudes receiving up to 40 % less irradiation compared to a horizontal surface, with important reductions especially in the summer. In these locations, the use of west and east facades may be necessary to achieve a balanced profile over the year. Moreover, the highest average cell temperatures occur in Riyadh, Naples and Seville, while lowest temperatures are verified in Cape Town and Munich, which is consistent with the corresponding ambient temperatures. Finally, with lower BIPV temperatures and relatively high solar irradiation, Cape Town achieves the highest performance ratio (PR) values. Conversely, the combination of high solar irradiation and high temperatures leads to lower PR values in Riyadh and Seville

2020 ◽  
Vol 26 (4) ◽  
pp. 21-32
Author(s):  
Nibras Mahmood Obaid ◽  
Emad T. Hashim ◽  
Naseer K. Kasim

The performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 1986.4kWh/m2. The average power losses per day of array, system losses and overall losses were (1.38, 0.15, 1.53) kWh/kWp/day respectively. The average capacity factor and performance ratio per year were 18.4% and 75.5% respectively. These results highlighted the performance analyses of this PV solar system located in Baghdad city. The performance can be considered as good and significant comparing with other world PV solar stations.  


2020 ◽  
Vol 12 (21) ◽  
pp. 9227
Author(s):  
Humberto Vidal ◽  
Marco Rivera ◽  
Patrick Wheeler ◽  
Nicolás Vicencio

Solar PV structures for locations at high latitudes in the Northern and Southern Hemispheres are increasingly in the spotlight. The work reported in this paper analyses the behaviour of a grid-connected 8.2 kWp photovoltaic system to either feed on-site electrical loads (a public institution, Corporación Nacional Forestal (CONAF), located 5.5 km south of Punta Arenas, lat. 53° S) or to feed into the electrical grid when the photovoltaic system generation is higher than the on-site load demand. The system simulation uses the PVSyst software with Meteonorm derived and measured climate information sets (ambient temperature, solar irradiation and wind speed). The agreement between the simulated and measured energy yield is analysed including the evaluation of the optimal generation energy of the PV array, the energy that is fed into the network, the performance ratio, and the normalised energy generation per installed kWp. The PV system considered in this work generates 7005.3 kWh/year, out of which only 6778 kWh/year are injected into the grid. The measured annual performance ratio is around 89%. The normalised productions of the inverter output or final system yield, i.e., useful energy, is 3.6 kWh/kWp/day. The measured annual average capacity factor obtained from this study is 15.1%. These performance parameters will encourage greater use of photovoltaic technology in the Chilean Patagonia region.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1865
Author(s):  
Bala Bhavya Kausika ◽  
Wilfried G. J. H. M. van Sark

Geographic information system (GIS) based tools have become popular for solar photovoltaic (PV) potential estimations, especially in urban areas. There are readily available tools for the mapping and estimation of solar irradiation that give results with the click of a button. Although these tools capture the complexities of the urban environment, they often miss the more important atmospheric parameters that determine the irradiation and potential estimations. Therefore, validation of these models is necessary for accurate potential energy yield and capacity estimations. This paper demonstrates the calibration and validation of the solar radiation model developed by Fu and Rich, employed within ArcGIS, with a focus on the input atmospheric parameters, diffusivity and transmissivity for the Netherlands. In addition, factors affecting the model’s performance with respect to the resolution of the input data were studied. Data were calibrated using ground measurements from Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands and validated with the station data from Cabauw. The results show that the default model values of diffusivity and transmissivity lead to substantial underestimation or overestimation of solar insolation. In addition, this paper also shows that calibration can be performed at different time scales depending on the purpose and spatial resolution of the input data.


2017 ◽  
Vol 5 (2) ◽  
pp. 110 ◽  
Author(s):  
Adebayo Fashina ◽  
Salifu Azeko ◽  
Joseph Asare ◽  
Chukwuemeka Ani ◽  
Vitalis Anye ◽  
...  

This paper presents the results of a study on the reliability and performance of the solar-powered street lighting systems installed at the African University of Science and Technology (AUST) in Nigeria, a hot and humid environment. The technical performance of the systems was studied using the following performance indicators: system energy yield, capture loss, as well as the system performance ratio while the reliability of the systems was examined using a model developed from the findings from the maintenance and fault diagnosis of the systems. The model was used to predict the total failure and survival probability of the systems using the Weibull distribution. The performance evaluation during the monitored period (February 2012 to January 2015) indicated that the performance ratios of the systems vary from 70% to 89% and the energy yields of the systems ranging from 2.87 h/day to 5.57 h/day. The results from the reliability analysis also showed that when the stress concentration factor around the notch between the cable terminals in the charge controller increases, the charge controller will become overheated, which in turn affected other components of the systems. The implications of this study are also discussed for the design and development of future solar-powered street lighting systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chong Li

The objective of this paper is to establish the performance of 8 kWp grid-connected photovoltaic (PV) power systems based on different PV module technologies in Nanjing, China. Nanjing has a hot summer and a cold winter which are considered based on monthly average solar irradiation and ambient temperature specifically for the deployment of grid-connected PV systems. The study focuses on performance assessment of grid-connected PV systems using typical PV modules made of monocrystalline silicon (m-Si), polycrystalline silicon (p-Si), edge-defined film-fed growth silicon (EFG-Si), cadmium telluride (CdTe) thin film, copper indium selenide (CIS) thin film, heterojunction with intrinsic thin layer (HIT), and hydrogenated amorphous silicon single-junction (a-Si:H single-PV) installed on location. The yearly average energy output, PV module and system efficiency, array yield, final yield, reference yield, performance ratio, monthly average array capture losses, and system losses of seven PV module technologies are all analyzed. The results show that grid-connected PV power system performance depends on geographical location, PV module types, and climate conditions such as solar radiation and ambient temperature. In addition, based on energy output and efficiency, the HIT PV power technology can be considered as the best option and CdTe and p-Si as the least suitable options for this area. The monthly average performance ratio of the CdTe technology was higher than those of other technologies over the monitoring period in Nanjing.


2018 ◽  
Vol 7 (2.17) ◽  
pp. 70
Author(s):  
Jaiganesh K ◽  
Karuppiah N ◽  
Ravivarman S ◽  
Md Asif

The maximum electrical energy conversion efficiency of the Solar PV panel is up to 22% in normal conventional roof- top system under the temperature of 25˚C on Standard Test Condition (STC). In Indian climatic conditions, the atmospheric temperature is mostly above 35˚C to 45˚C, it incites 35˚C to 80˚C temperature on the PV panel. The black body of the PV panel absorbs more heat. This temperature affects the electrical efficiency of the panel significantly. This paper proposes the mathematical modelling of the solar PV panel for different solar irradiation and the temperature. The experimental evaluation is conducted in the latitude of 11.36 (N) and longitude 77.82 (E). The testing and monitoring was done with LabVIEW based National Instruments hardware such as NI cDAQ-9178, NI DAQ - 9227 and NI DAQ 9225. The comparative study between the simulated result and real time hardware results are discussed in this paper. The test result shows that the output of the proposed model mismatches with the experimental output of the solar PV panel due to the negative correlation between the efficiency and temperature for variable irradiation condition. It shows a power difference of 9.41W between the output of the proposed model and the experimental setup.  


2018 ◽  
Vol 8 (2) ◽  
pp. 160-170 ◽  
Author(s):  
Mohsen Shahandashti ◽  
Baabak Ashuri ◽  
Kia Mostaan

PurposeFaults in the actual outdoor performance of Building Integrated Photovoltaic (BIPV) systems can go unnoticed for several months since the energy productions are subject to significant variations that could mask faulty behaviors. Even large BIPV energy deficits could be hard to detect. The purpose of this paper is to develop a cost-effective approach to automatically detect faults in the energy productions of BIPV systems using historical BIPV energy productions as the only source of information that is typically collected in all BIPV systems.Design/methodology/approachEnergy productions of BIPV systems are time series in nature. Therefore, time series methods are used to automatically detect two categories of faults (outliers and structure changes) in the monthly energy productions of BIPV systems. The research methodology consists of the automatic detection of outliers in energy productions, and automatic detection of structure changes in energy productions.FindingsThe proposed approach is applied to detect faults in the monthly energy productions of 89 BIPV systems. The results confirm that outliers and structure changes can be automatically detected in the monthly energy productions of BIPV systems using time series methods in presence of short-term variations, monthly seasonality, and long-term degradation in performance.Originality/valueUnlike existing methods, the proposed approach does not require performance ratio calculation, operating condition data, such as solar irradiation, or the output of neighboring BIPV systems. It only uses the historical information about the BIPV energy productions to distinguish between faults and other time series properties including seasonality, short-term variations, and degradation trends.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3943
Author(s):  
Nicolás Velázquez-Limón ◽  
Ricardo López-Zavala ◽  
Luis Hernández-Callejo ◽  
Jesús A. Aguilar-Jiménez ◽  
Sara Ojeda-Benítez ◽  
...  

In this work, the analysis of a hybrid LiBr/H2O absorption-cooling and flash-desalination system, using solar thermal energy as heat source, is presented. An absorption open-cycle with three pressure levels is used in combination with a single-stage flash-desalination process to use the coolant as product water, resulting in an increase in cooling and desalination efficiency. For the application, a 20-room coastal hotel complex in San Felipe, Baja California, Mexico, is taken as a case study and the sizing of the solar collection and storage system is carried out for the operation of the proposed hybrid system, during the summer operative period. The operational dynamics during the week with the highest ambient temperatures are presented. The dimensioning of the solar collector’s area and the energy storage resulted in a collection area of 620 m2 with 30 m3, respectively, reaching a solar fraction of 69%. The absorption-cooling subprocess showed an increase of 13.88% in the average coefficient of performance (COP) compared to conventional LiBr/H2O absorption systems. Also, considering that the system provides cooling and desalination simultaneously, the average COPG is 1.64, which is 2.27 times higher than the COP of conventional LiBr/H2O single-effect absorption units. During the critical week, the system presented a desalinated water production of 16.94 m3 with an average performance ratio (PR) of 0.83, while the average daily water production was 2406 kg/day; enough to satisfy the daily water requirements of four people in a coastal hotel in Mexico or to cover the basic services of 24 people according to the World Health Organization.


2019 ◽  
Vol 10 (1) ◽  
pp. 201
Author(s):  
Azhan Ab. Rahman ◽  
Zainal Salam ◽  
Sulaiman Shaari ◽  
Mohd Zulkifli Ramli

Photovoltaic inverter conversion efficiency is closely related to the energy yield of a photovoltaic system. Usually, the peak efficiency (ηmax) value from the inverter data sheet is used, but it is inaccurate because the inverter rarely operates at the peak power. The weighted efficiency is a preferable alternative as it inherently considers the power conversion characteristics of the inverter when subjected to varying irradiance. However, since the weighted efficiency is influenced by irradiance, its value may not be appropriate for different climatic conditions. Based on this premise, this work investigates the non-suitability of the European weighted efficiency (ηEURO) for inverters installed in the Equatorial region. It utilizes a one year data from the Equatorial irradiance profile to recalculate the value of ηEURO (ηEURO_recal) and to compare it with the original ηEURO. Furthermore, a new weighted efficiency formula for the Equatorial climate (ηEQUA) is proposed. Validation results showed that calculated energy yield with ηEQUA closely matched the real energy yield of 3 kW system with only 0.16% difference. It is envisaged that the usage of ηEQUA instead of ηmax or ηEURO will results in a more accurate energy yield and return of investment calculations for PV systems installed in Equatorial regions.


Sign in / Sign up

Export Citation Format

Share Document