Constructing Expert System to Automatic Translation for Software development

2018 ◽  
Vol 2 (2) ◽  
pp. 231-247
Author(s):  
Safwan Hasoon ◽  
Fatima Younis

the development in computer fields, especially in the software engineering, emerged the need to construct intelligence tool for automatic translation from design phase to coding phase, for producing the source code from the algorithm model represented in pseudo code, and execute it depending on the constructing expert system which reduces the cost, time and errors that may occur during the translation process, which has been built the knowledge base, inference engine, and the user interface. The knowledge bases consist of the facts and the rules for the automatic transition. The results are compared with a set of neural networks, which are Back propagation neural network, Cascade-Forward network, and Radial Basis Function network. The results showed the superiority of the expert system in automatic transition process speed, as well as easy to add, delete or modify process for rules or data of the pseudo code compared with previously mentioned neural networks.

2021 ◽  
Vol 14 (16) ◽  
Author(s):  
Adnan A. Ismael ◽  
Saleh J. Suleiman ◽  
Raid Rafi Omar Al-Nima ◽  
Nadhir Al-Ansari

AbstractCylindrical weir shapes offer a steady-state overflow pattern, where the type of weirs can offer a simple design and provide the ease-to-pass floating debris. This study considers a coefficient of discharge (Cd) prediction for oblique cylindrical weir using three diameters, the first is of D1 = 0.11 m, the second is of D2 = 0.09 m, and the third is of D3 = 0.06.5 m, and three inclination angles with respect to channel axis, the first is of θ1 = 90 ͦ, the second is of θ2 = 45 ͦ, and the third is of θ3 = 30 ͦ. The Cd values for total of 56 experiments are estimated by using the radial basis function network (RBFN), in addition of comparing that with the back-propagation neural network (BPNN) and cascade-forward neural network (CFNN). Root mean square error (RMSE), mean square error (MSE), and correlation coefficient (CC) statics are used as metrics measurements. The RBFN attained superior performance comparing to the other neural networks of BPNN and CFNN. It is found that, for the training stage, the RBFN network benchmarked very small RMSE and MSE values of 1.35E-12 and 1.83E-24, respectively and for the testing stage, it also could benchmark very small RMSE and MSE values of 0.0082 and 6.80E-05, respectively.


2017 ◽  
Vol 26 (4) ◽  
pp. 625-639 ◽  
Author(s):  
Gang Wang

AbstractCurrently, most artificial neural networks (ANNs) represent relations, such as back-propagation neural network, in the manner of functional approximation. This kind of ANN is good at representing the numeric relations or ratios between things. However, for representing logical relations, these ANNs have disadvantages because their representation is in the form of ratio. Therefore, to represent logical relations directly, we propose a novel ANN model called probabilistic logical dynamical neural network (PLDNN). Inhibitory links are introduced to connect exciting links rather than neurons so as to inhibit the connected exciting links conditionally to make them represent logical relations correctly. The probabilities are assigned to the weights of links to indicate the belief degree in logical relations under uncertain situations. Moreover, the network structure of PLDNN is less limited in topology than traditional ANNs, and it is dynamically built completely according to the data to make it adaptive. PLDNN uses both the weights of links and the interconnection structure to memorize more information. The model could be applied to represent logical relations as the complement to numeric ANNs.


2011 ◽  
Vol 230-232 ◽  
pp. 149-153 ◽  
Author(s):  
Chuan Yin Tang ◽  
Guang Yao Zhao ◽  
Yi Min Zhang ◽  
Xiao Yu E

A six degrees of freedom half body vehicle suspension system is presented in the paper .The Back Propagation neural network algorithm and the Radial-Basis Function network algorithm is adopted to control the suspension system. With the aid of software Matlab/Simulink , the simulation model is obtained. A great deal of simulation work is done. Simulation results demonstrate that both the designed radius basis function neural network and the back propagation neural network work well for the proposed vehicle suspension model in the paper .


2018 ◽  
Vol 61 (2) ◽  
pp. 399-409 ◽  
Author(s):  
Fangle Chang ◽  
Paul Heinemann

Abstract. Odor emitted from dairy operations may cause negative reactions by farm neighbors. Identification and evaluation of such malodors is vital for better understanding of human response and methods for mitigating effects of odors. The human nose is a valuable tool for odor assessment, but using human panels can be costly and time-consuming, and human evaluation of odor is subjective. Sensing devices, such as an electronic nose, have been widely used to measure volatile emissions from different materials. The challenge, though, is connecting human assessment of odors with the quantitative measurements from instruments. In this work, a prediction system was designed and developed to use instruments to predict human assessment of odors from common dairy operations. The model targets are the human responses to odor samples evaluated using a general pleasantness scale ranging from -11 (extremely unpleasant) to +11 (extremely pleasant). The model inputs were the electronic nose measurements. Three different neural networks, a Levenberg-Marquardt back-propagation neural network (LMBNN), a scaled conjugate gradient back-propagation neural network (CGBNN), and a resilient back-propagation neural network (RPBNN), were applied to connect these two sources of information (human assessments and instrument measurements). The results showed that the LMBNN model can predict human assessments with accuracy as high as 78% within a 10% range and as high as 63% within a 5% range of the targets in independent validation. In addition, the LMBNN model performed with the best stability in both training and independent validation. Keywords: Animal production, Hedonic tone, Olfactometric models.


Author(s):  
T. Zh. Mazakov ◽  
D. N. Narynbekovna

Now a day’s security is a big issue, the whole world has been working on the face recognition techniques as face is used for the extraction of facial features. An analysis has been done of the commonly used face recognition techniques. This paper presents a system for the recognition of face for identification and verification purposes by using Principal Component Analysis (PCA) with Back Propagation Neural Networks (BPNN) and the implementation of face recognition system is done by using neural network. The use of neural network is to produce an output pattern from input pattern. This system for facial recognition is implemented in MATLAB using neural networks toolbox. Back propagation Neural Network is multi-layered network in which weights are fixed but adjustment of weights can be done on the basis of sigmoidal function. This algorithm is a learning algorithm to train input and output data set. It also calculates how the error changes when weights are increased or decreased. This paper consists of background and future perspective of face recognition techniques and how these techniques can be improved.


2018 ◽  
Vol 49 ◽  
pp. 02004 ◽  
Author(s):  
Gilang Almaghribi Sarkara Putra ◽  
Rendra Agus Triyono

Cost estimation on the bidding phase is a crucial stage that determines the success of the Engineering, Procurement and Construction (EPC) project. If the cost offered to the client is too high then it could not compete with the other bidder, but if the cost offered are too low it can reduce profit margins and result in losses for the EPC companies. This paper describe the use of Back Propagation Neural Network method to help determine cost estimation. This method is applied specifically to determine control valve cost estimation on the bidding phase so that the retrieved costs will be accurate. When there is no technical and price quotation from vendors as well as the narrowness of the bidding processing time, this method can be an alternative choice to determine the price based on previous vendor quotation. In the future, this method could be developed and applied for other instrumentation equipment such as transmitter, switch, analyzer, control system and others to achieve total cost estimation of instrumentation equipment in EPC bidding proposal.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed El-Sayed Mousa ◽  
Mahmoud Abdelrahman Kamel

Purpose This study aims to develop and test a framework for integration between data envelopment analysis (DEA) and artificial neural networks (ANN) to predict the best financial performance concerning return on assets and return on equity for banks listed on the Egyptian Exchange, to help managers generate what-if scenarios? For performance improvement and benchmarking. Design/methodology/approach The study empirically tested the three-stage DEA-ANN framework. First, DEA was used as a preprocessor of the banks’ efficiency scores. Second, a back-propagation neural network as a multi-layer perceptron-ANN’s model was designed using expected data sets from DEA to learn optimal performance patterns. Third, the superior performance of banks was forecasted. Findings The results indicated that banks are not operating under their most productive operations, and there is room for potential improvements to reach outperformance. Moreover, the neural networks’ empirical test results showed high correlations between the actual and expected values, with low prediction errors in both the test and prediction phases. Practical implications Based on best performance prediction, banks can generate alternative scenarios for future performance improvement and enabling managers to develop effective strategies for performance control under uncertainty and limited data. Besides, supporting the decision-making process and proactive management of performance. Originality/value Despite the growing research stream supporting DEA-ANN integration applications, these are still limited and scarce, especially in the Middle East and North Africa region. Therefore, the study trying to fill this gap to help bank managers predict the best financial performance.


2014 ◽  
Vol 513-517 ◽  
pp. 695-698
Author(s):  
Dai Yuan Zhang ◽  
Jian Hui Zhan

Traditional short-term traffic flow forecasting of road usually based on back propagation neural network, which has a low prediction accuracy and convergence speed. This paper introduces a spline weight function neural networks which has a feature that the weight function can well reflect sample information after training, thus propose a short-term traffic flow forecasting method base on the spline weight function neural network, specify the network learning algorithm, and make a comparative tests bases on the actual data. The result proves that in short-term traffic flow forecasting, the spline weight function neural network is more effective than traditional methods.


2018 ◽  
Vol 786 ◽  
pp. 293-301 ◽  
Author(s):  
Hesham M. Shehata ◽  
Yasser S. Mohamed ◽  
Mohamed Abdellatif ◽  
Taher H. Awad

Automatic crack inspection techniques that limit the necessity of human have the potential to lower the cost and time of the process. In this study, a maximum crack width estimation approach is presented. Seventy nine segments of cracks are used for training the neural networks and twenty six segments are used for examination. The maximum width for each segment is measured using laser scanning microscope and segment image is captured and magnified using the microscope camera in order to obtain the extracted crack profile number of pixels. Feed and cascade forward back propagation artificial neural networks are designed and constructed. The input and output for the networks are the crack width in terms of number of pixels and the maximum estimated crack width respectively. It is shown that, the artificial neural networks technique can effectively be used to estimate the crack width. The feedforward back propagation structure which is designed with two layers and training function TRAINLM gives the best results in examination.


Author(s):  
Parham Piroozan

This paper describes an intelligent control system that uses electro-optics and neural networks to control the flow of air over a flexible wall. In this investigation a pressure sensor which was part of the wall of the wind tunnel and an optical apparatus were used to produce moire´ fringes. A back propagation neural network was used to analyze the fringe patterns and to classify the pressures into four levels. A second neural network was used to recognize the pressure patterns and to provide the input to a control system that was capable of modifying the shape of the flexible wall in order to preserve the stability of the flow. The flexible wall was part of the wall of the wind tunnel and was installed in the upstream of the flow. It was made of silicone rubber and had an area of 76 mm by 76 mm. There were 15 rows of actuators installed under the flexible wall which were used to change the shape of the wall. In the downstream of the flow was an optical pressure sensor which had the same dimensions as the flexible wall and consisted of a 15 × 15 array of small diaphragms. These diaphragms responded to the pressure fluctuations in the boundary layer flow and were the source of the signals for the optical system. A CCD camera viewed the pressure sensor through an optical apparatus which produced moire´ fringes. A back propagation neural network analyzed the fringe patterns and classified the pressures into four levels. The classified pressures which was a 15 × 15 array of numbers ranging from 1 to 4 was the input to a second back propagation neural network which was used to recognize the pressure patterns. The output from the back propagation neural network used for pattern recognition provided the input to a control system that changed the shape of the flexible wall. This paper presents the experimental results as well as the computer simulations which were created for this project. This includes the complete process of creating the slope fringes, classifying the pressures into four levels, recognizing the wall pressure patterns and generating the output signals to the actuator for changing the shape of the flexible wall.


Sign in / Sign up

Export Citation Format

Share Document