scholarly journals Herbicide Application Timings on Weed Control and Jack-O-Lantern Pumpkin Yield

2012 ◽  
Vol 22 (2) ◽  
pp. 201-206 ◽  
Author(s):  
S. Alan Walters ◽  
Bryan G. Young

A study was conducted in a no-tillage (NT) jack-o-lantern pumpkin (Cucurbita pepo) field following winter wheat (Triticum aestivum) harvest to determine the effects of using registered herbicides at various timings on weed control and pumpkin yield. All application timings used in this study were important to maximize weed control over the pumpkin growing season. For an initial stale seedbed burndown treatment, paraquat provided better broadleaf weed control than glyphosate, which lead to greater pumpkin yields. The use of s-metolachlor + halosulfuron-methyl preemergence (PRE) and clethodim postemergence (POST) gave the best results for the second series of herbicide applications which related to higher pumpkin yields compared with none or only a PRE application. The last application timing (midseason POST-directed paraquat application between rows) also improved weed control and provided higher pumpkin yields compared with no treatment. Growers who use a stale seedbed burndown treatment in NT pumpkin production, before seedling emergence or transplanting, will generally use glyphosate although this study indicated that paraquat may prove to be a better choice depending on the weed species that are present at this application timing. Most weed control in NT pumpkin production is achieved by a PRE application of various tank-mixed herbicides for both grass and broadleaf weed control, with a POST grass herbicide, a POST application of halosulfuron-methyl, or both [for control of nutsedge (Cyperus sp.), specific broadleaf weed species, or both] applied 3 to 4 weeks later, and this study indicated that the use of labeled PRE and POST herbicides are essential to optimize weed control and pumpkin yields in NT. Most pumpkin growers do not use a POST-directed application of a nonselective herbicide (such as paraquat) before vines cover the soil surface although it appears that this application may be warranted to control weeds that have emerged later in the growing season to maximize pumpkin yield, especially if POST midseason over-the-top herbicide applications are not used. This study indicated that in addition to applying the limited PRE and POST herbicides available for weed control in pumpkin, the use of other chemical weed management practices (e.g., stale seedbed herbicide treatments or POST-directed nonselective herbicide applications) can provide valuable weed control in NT production systems and should be considered by growers to maximize pumpkin yield.

Weed Science ◽  
2016 ◽  
Vol 64 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Zubeyde Filiz Arslan ◽  
Martin M. Williams ◽  
Roger Becker ◽  
Vincent A. Fritz ◽  
R. Ed Peachey ◽  
...  

Atrazine has been the most widely used herbicide in North American processing sweet corn for decades; however, increased restrictions in recent years have reduced or eliminated atrazine use in certain production areas. The objective of this study was to identify the best stakeholder-derived weed management alternatives to atrazine in processing sweet corn. In field trials throughout the major production areas of processing sweet corn, including three states over 4 yr, 12 atrazine-free weed management treatments were compared to three standard atrazine-containing treatments and a weed-free check. Treatments varied with respect to herbicide mode of action, herbicide application timing, and interrow cultivation. All treatments included a PRE application of dimethenamid. No single weed species occurred across all sites; however, weeds observed in two or more sites included common lambsquarters, giant ragweed, morningglory species, velvetleaf, and wild-proso millet. Standard treatments containing both atrazine and mesotrione POST provided the most efficacious weed control among treatments and resulted in crop yields comparable to the weed-free check, thus demonstrating the value of atrazine in sweet corn production systems. Timely interrow cultivation in atrazine-free treatments did not consistently improve weed control. Only two atrazine-free treatments consistently resulted in weed control and crop yield comparable to standard treatments with atrazine POST: treatments with tembotrione POST either with or without interrow cultivation. Additional atrazine-free treatments with topramezone applied POST worked well in Oregon where small-seeded weed species were prevalent. This work demonstrates that certain atrazine-free weed management systems, based on input from the sweet corn growers and processors who would adopt this technology, are comparable in performance to standard atrazine-containing weed management systems.


2019 ◽  
Vol 33 (6) ◽  
pp. 847-854
Author(s):  
Guoqi Chen ◽  
Bin Zhang ◽  
Qiong Wu ◽  
Linhong Jin ◽  
Zhuo Chen ◽  
...  

AbstractFarmer training is important to improve weed management practices in tea cultivation. To explore the group characteristics of tea growers, we interviewed 354 growers in Guizhou Province, China. Sixty-one percent of the respondents planted tea for companies or cooperative groups, and 56% managed tea gardens larger than 10 ha. Self-employed tea growers tended to be older and smallholders, and to apply herbicides and conduct weed control less frequently (P < 0.05). Approximately 87% of the respondents conducted weed control two to four times yr−1, 83% spent between $200 and $2,000 ha−1 yr−1 for weed control, and 42% thought weed control costs would decrease by 5 years from this study. Twenty-eight species were mentioned by the respondents as being the most serious. According to canonical correspondence analysis, latitude, altitude, being self-employed or a member of a cooperative, having training experience in tea-garden weed management, and frequency and cost of weed control in tea gardens had significant (P < 0.05) influence on the composition of most troublesome weed species listed by respondents. Among the respondents, 60% had had farmer’s training on weed management in tea gardens. Of these, a significant number (P < 0.05) tended to think weed control costs would decrease, and a nonsignificant number (P > 0.05) tended to conduct weed control more frequently and have lower weed management costs in their tea gardens.


Weed management is a new term for the age-old practice of employing all available means, in a planned way, to keep weed populations under control. It seeks to distinguish the systematic approach to weed control, based on scientific knowledge and rational strategies, from the pragmatic destruction of weeds. The remarkable efficiency of herbicides has in recent years emphasized the latter and allowed revolutionary methods of crop production to be practised. These have, however, led to serious new weed problems which in turn require more intensive herbicide use. The need for a weed management approach is increasingly recognized. New opportunities for this are provided by the availability of numerous herbicides and plant growth regulators and a growing understanding of the biology, ecology and population dynamics of weeds in relation to crop production systems. Examples discussed include: systematic control of grass weeds in intensive cereals in Britain, weed control in rice and in soybeans, the control of aquatic weeds by biological and chemical methods and an experimental zero-tillage cropping system for the humid tropics based on herbicides, growth regulators and ground-cover leguminous crops. In such management systems, interference of weed behaviour by exogenous growth regulators is likely to be of increasing significance. Constraints on the adoption of weed management practices include lack of support for weed science as a discipline, limited appeal to the agrochemical industry and inadequate extension services in many countries.


2020 ◽  
Author(s):  
Akashdeep Singh ◽  
S. S. Rana ◽  
Anju Bala

Chickpea (Cicer arietinum) is one of the most important pulse crops but it’s productivity in India is quite low. There are various reasons for low productivity. Weed control is the basic requirement and the major component of crop management. Weeds on an average reduce the crop yield by 40-87 per cent. Deciding time to control weeds requires detailed knowledge of the weed populations in the field. Different management practices like altering spacing, competitive cultivars, etc. can help in enhancing the productivity. With the world entering the precision-farming era, more emphasis is being put on the use of post-emergence herbicides. Application of two or more herbicide at the same time or as a double knockdown and integrating with hand-weeding provides desirable control of different weed species besides reducing the hazard of chemical weed control.


2000 ◽  
Vol 80 (3) ◽  
pp. 655-660 ◽  
Author(s):  
R. E. Blackshaw ◽  
G. Semach ◽  
X. Li ◽  
J. T. O'Donovan ◽  
K. N. Harker

Foxtail barley (Hordeum jubatum L.) is becoming a more severe weed problem as conservation tillage becomes widely adopted on the southern Canadian prairies. A 5-yr field study was conducted to determine the combined effects of tillage, N rate, N placement and application timing of glyphosate to manage foxtail barley in spring wheat. Wide-blade tillage conducted in fall and spring, compared to zero-till, reduced foxtail barley biomass and seed production in all yr and increased wheat yield in 4 of 5 yr. Foxtail barley was highly competitive with wheat for added N. N fertiliser placed mid-row in 10-cm-deep bands reduced foxtail barley growth in 2 of 5 yr and increased wheat yield in 3 of 5 yr compared with soil surface broadcast N. Wheat yield sometimes was similar when N was banded at 60 kg ha−1 or broadcast at 120 kg ha−1, indicating the large advantage of banding N in some situations. Glyphosate at 800 g ha−1 applied preharvest or postharvest gave similar levels of foxtail barley control in 2 of 3 yr. Results indicate that foxtail barley can be adequately managed in wheat production systems utilizing conservation tillage. Key words: Foxtail barley, Hordeum jubatum, glyphosate, integrated weed management, nitrogen placement, zero tillage


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Seth B. Abugho

Crop residues acting as mulches can influence weed seedling emergence and weed biomass. A field study was conducted to evaluate the effect of rice residue amounts (0, 3, and 6 t ha−1) on seedling emergence of eight weed species in zero-till dry-seeded rice. The highest seedling emergence of spiny amaranth, southern crabgrass, crowfootgrass, junglerice, eclipta, goosegrass, and Chinese sprangletop was observed in the absence of residue. Seedling emergence of these weeds declined with increasing residue amounts; however, the greatest and most substantial reductions in emergence occurred with 6 t ha−1of residue. The presence of residue also resulted in less weed biomass than with the no-residue treatment. The emergence and biomass of threelobe morningglory seedlings, however, were not influenced by residue amounts. The use of residue also increased the time taken to reach 50% of maximum emergence for some species, for example, spiny amaranth and Chinese sprangletop. The results of our study suggest that the use of residue at high rates can help suppress seedling emergence and growth of many weeds. However, there is a need to integrate other weed management strategies with residue retention to achieve season-long weed control.


Weed Science ◽  
2012 ◽  
Vol 60 (SP1) ◽  
pp. 31-62 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Sarah M. Ward ◽  
David R. Shaw ◽  
Rick S. Llewellyn ◽  
Robert L. Nichols ◽  
...  

Herbicides are the foundation of weed control in commercial crop-production systems. However, herbicide-resistant (HR) weed populations are evolving rapidly as a natural response to selection pressure imposed by modern agricultural management activities. Mitigating the evolution of herbicide resistance depends on reducing selection through diversification of weed control techniques, minimizing the spread of resistance genes and genotypes via pollen or propagule dispersal, and eliminating additions of weed seed to the soil seedbank. Effective deployment of such a multifaceted approach will require shifting from the current concept of basing weed management on single-year economic thresholds.


2004 ◽  
Vol 18 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Michael J. Walsh ◽  
Richard D. Devlin ◽  
Stephen B. Powles

The earliest possible seeding of wheat crops in the southern Australian dryland cropping zone is prevented by the lack of a weed control practice that adequately controls initial weed seedling emergence at the start of the growing season. The objective of this study was to determine the potential for using residual herbicides applied up to 1 mo before the start of the growing season to control rigid ryegrass seedlings that emerge after the season-opening rains. In a series of glasshouse studies, S-metolachlor and propyzamide were found to effectively persist on the soil surface through prolonged exposure to hot, dry, and intense sunlight conditions, preventing the establishment of rigid ryegrass seedlings. In addition, these herbicides caused little or no effect on subsequently seeded wheat. It also was determined that S-metolachlor had the potential to retain efficacy on rigid ryegrass seedlings after 12 wk of exposure on the soil surface to these conditions. These studies have identified two herbicides with the potential for use at the novel application timing, i.e., before the commencement of the growing season, in Mediterranean climates of southern Australia.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253346
Author(s):  
Het Samir Desai ◽  
Bhagirath Singh Chauhan

Thorough knowledge of the germination behavior of weed species could aid in the development of effective weed control practices, especially when glyphosate resistance is involved. A study was conducted using two glyphosate-resistant (GR) (SGW2 and CP2) and two glyphosate-susceptible (GS) (Ch and SGM2) populations of Chloris virgata, an emerging and troublesome weed species of Australian farming systems, to evaluate their germination response to different alternating temperature (15/5, 25/15 and 35/25°C with 12 h/12 h light/dark photoperiod) and moisture stress regimes (0, -0.1, -0.2, -0.4, -0.8 and -1.6 MPa). These temperature regimes represent temperatures occurring throughout the year in the eastern grain region of Australia. Seeds germinated in all the temperature regimes with no clear indication of optimum thermal conditions for the GR and GS populations. All populations exhibited considerable germination at the lowest alternating temperature regime 15/5°C (61%, 87%, 49%, and 47% for Ch, SGM2, SGW2, and CP2, respectively), demonstrating the ability of C. virgata to germinate in winter months despite being a summer annual. Seed germination of all populations was inhibited at -0.8 and -1.6 MPa osmotic potential at two alternating temperature regimes (15/5 and 35/25°C); however, some seeds germinated at 25/15°C at -0.8 MPa osmotic potential, indicating the ability of C. virgata to germinate in arid regions and drought conditions. Three biological parameters (T10: incubation period required to reach 10% germination; T50: incubation period required to reach 50% germination; and T90: incubation period required to reach 90% germination) suggested late water imbibition with increasing moisture stress levels. The GR population SGW2 exhibited a distinctive pattern in T10, T50, and T90, possessing delayed germination behaviour and thus demonstrating an escape mechanism against pre-plating weed management practices. Knowledge gained from this study will help in developing site-specific and multi-tactic weed control protocols.


EDIS ◽  
2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Jason A. Ferrell ◽  
Gregory E. MacDonald ◽  
Pratap Devkota

Successful weed control is essential for economical corn production in Florida. Weeds reduce corn yields by competing for moisture, nutrients, and light during the growing season and interfere with harvest. Producing a good corn crop is only half the battle and will not be profitable unless the corn can be harvested. Late-season weeds can result in excessive yield loss, inefficient equipment operation, and provide a source of weed seed for the following season. Weeds can be controlled in corn; however, this involves good management practices in all phases of corn production.https://edis.ifas.ufl.edu/wg007


Sign in / Sign up

Export Citation Format

Share Document