scholarly journals Impregnating Activated Carbon with Iron Salts to Increase Hydrogen Sulfide Removal

2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Morgan Hull

Hydrogen sulfide (H₂S) emissions from landfills negatively impact surrounding communities. In addition to an unpleasant, rotten-egg odor, inhalation of the gas can cause respiratory distress and irritation. Peak emissions are released from C&D landfills through the decomposition of gypsum drywall. Current removal technologies are costly and often ineffective. The goal of this research was to develop a cost-effective mat geared toward H₂S removal. Preliminary research revealed an increase in adsorption capacity through the addition of iron salts, FeCl3 and FeSO4, to activated carbon at a 5:1 carbon to iron ratio. To evaluate the effect of heat treatments on iron oxide formation, and subsequent adsorption capacity, samples were divided into heat treatment groups of 250ºC, 450ºC, and 650ºC. Samples were flushed with 100 ppm of H₂S under N₂ at 250 ml/min for two hours. Over this time duration, samples subjected to higher temperature heat treatments showed increased adsorption capacity. All heat treated samples demonstrated higher adsorption compared to the baseline non-heat treated samples. Additional research will be conducted to assess the effect of heat treatments above 650ºC.

2019 ◽  
Vol 45 (2) ◽  
pp. 501-518
Author(s):  
Omar Abed Habeeb ◽  
Olusegun Abayomi Olalere ◽  
Ramesh Kanthasamy ◽  
Bamidele Victor Ayodele

1996 ◽  
Vol 55 (1-4) ◽  
pp. 279-283 ◽  
Author(s):  
T. Nakamura ◽  
S. Tanada ◽  
N. Kawasaki ◽  
T. Hara ◽  
J. Fujisawa ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4793 ◽  
Author(s):  
Joanna K. Huertas ◽  
Lawrence Quipuzco ◽  
Amro Hassanein ◽  
Stephanie Lansing

Biological desulfurization of biogas from a field-scale anaerobic digester in Peru was tested using air injection (microaeration) in separate duplicate vessels and chemical desulfurization using duplicate iron filters to compare hydrogen sulfide (H2S) reduction, feasibility, and cost. Microaeration was tested after biogas retention times of 2 and 4 h after a single injection of ambient air at 2 L/min. The microaeration vessels contained digester sludge to seed sulfur-oxidizing bacteria and facilitate H2S removal. The average H2S removal efficiency using iron filters was 32.91%, with a maximum of 70.21%. The average H2S removal efficiency by iron filters was significantly lower than microaeration after 2 and 4 h retention times (91.5% and 99.8%, respectively). The longer retention time (4 h) resulted in a higher average removal efficiency (99.8%) compared to 2 h (91.5%). The sulfur concentration in the microaeration treatment vessel was 493% higher after 50 days of treatments, indicating that the bacterial community present in the liquid phase of the vessels effectively sequestered the sulfur compounds from the biogas. The H2S removal cost for microaeration (2 h: $29/m3 H2S removed; and 4 h: $27/m3 H2S removed) was an order of magnitude lower than for the iron filter ($382/m3 H2S removed). In the small-scale anaerobic digestion system in Peru, microaeration was more efficient and cost effective for desulfurizing the biogas than the use of iron filters.


2018 ◽  
Vol 280 ◽  
pp. 315-322
Author(s):  
N. Mohammad Nor ◽  
L. L. Chung ◽  
Bassim H. Hameed ◽  
S. Sethupathi ◽  
A. R. Mohamed

This research work is focuses on understanding the characteristics of modified nitrogen-enriched palm shell activated carbon (N-PSAC) that undergo different microwave (MW) operating parameters towards efficient H2S removal. The nitrogen functional groups were tailored onto PSAC micropore structures through impregnation of urea onto palm shell activated carbon (PSAC). The effect of MW heating variables (heating temperature, N2 flow rate, heating time and amount of adsorbent) on N-PSAC adsorbent was investigated and analyzed with respect to H2S adsorption capacity.One factor at a time (OFAT) approach was used to produce an efficient N-PSAC adsorbent, where theH2S breakthrough capacity (measured at 5% of H2S outlet concentration) attained was in the range of 98.71 – 211.35 mg/g.It was found that MW heating variables contribute a significant impactto the modification of N-PSAC adsorbent in catering the H2S emission.


Sign in / Sign up

Export Citation Format

Share Document