scholarly journals Flame retardation performances of phosphorus-containing compounds in unsaturated polyester

2015 ◽  
Vol 18 (3) ◽  
pp. 145-152
Author(s):  
Huyen Thi Thu Nguyen ◽  
Linh Thi Thuy Pham ◽  
Quy Thi Dong Hoang

Aluminium hydrogen phosphite (AHP) was synthesized in order to investigate their flame retarding performances for unsaturated polyester (UP). AHP and triphenyl phosphate (TPP) flame retardants were studied to increase fire resistance and thermal stability of materials. UL 94HB rating is achieved at 15 wt% AHP - 15 wt% TPP loading. Sample with 30 wt% loading of AHP has the burning rate slower than that of neat UP. The incorporation of FR increases the flame retardant properties as well as the amounts of charred residues protecting the mixture from further degradation. This assertion can be accepted when observing that the char yield of UP/FR mixtures at 500-650 oC is much higher than that of neat UP. The char layer may limit the amount of fuel available and insulate the underlying polymer from the flame and, thus, make further degradation more difficult.

2007 ◽  
Vol 79 (11) ◽  
pp. 1879-1884 ◽  
Author(s):  
Smaranda Iliescu ◽  
Gheorghe Ilia ◽  
Aurelia Pascariu ◽  
Adriana Popa ◽  
Nicoleta Plesu

Direct, efficient, organic solvent- and catalyst-free synthesis of a series of polyphosphates was accomplished. The reaction involved a gas-liquid interfacial polycondensation between arylphosphoric dichlorides and bisphenol A. The polyphosphates were characterized by IR, 1H NMR, 31P NMR, inherent viscosity, thermal analysis, and molar mass. Yields in the range 70-90 % and inherent viscosities in the range 0.30-0.40 dl/g were obtained. The thermal stability of the polyphosphates was investigated by using thermogravimetry.


2008 ◽  
Vol 5 (1) ◽  
pp. 131-136
Author(s):  
Baghdad Science Journal

In this investigation , borax (B) (additive I) and chlorinated paraffin (CP.) (additive II) ,were used as flame retardants for each of epoxy and unsaturated polyester resins in the weight ratios of 2,4,6, & 8% by preparing films of (130×130×3) mm dimensions. Also films of these resins with a mixture of [50%(B.)+50%(CP.)] (additive III) in the same weight ratios were prepared in order to study the synergistic effect of these additives on the flammability of the two resins . Three standard test methods were used to measure the flame retardation which are : 1-ASTM : D-2863 2-ASTM : D-635 3-ASTM : D-3014 The results obtained from these tests indicated that the additives (B),(CP.) and their mixture , gave a good effect as flame retardants for each epoxy and unsaturated polyester resins , but their synergistic effect was more effective than each of them alone. Finally , the compatibility between the additives and resins (which showed a clear effect on retardation) was also studied .


2012 ◽  
Vol 125 (2) ◽  
pp. 1219-1225 ◽  
Author(s):  
Yuan-Qin Xiong ◽  
Xu-Yong Zhang ◽  
Jia Liu ◽  
Ming-Ming Li ◽  
Fei Guo ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 380 ◽  
Author(s):  
Wei Zhao ◽  
Yongxiang Li ◽  
Qiushi Li ◽  
Yiliang Wang ◽  
Gong Wang

The flame retardant modification of epoxy (EP) is of great signification for aerospace, automotive, marine, and energy industries. In this study, a series of EP composites containing different variations of phosphorus-containing polysulfone (with a phosphorus content of approximately 1.25 wt %) were obtained. The obtained EP/polysulfone composites had a high glass transition temperature (Tg) and high flame retardancy. The influence of phosphorus-containing compounds (ArPN2, ArPO2, ArOPN2 and ArOPO2) on the thermal properties and flame retardancy of EP/polysulfone composites was investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), a UL-94 vertical burning test, and cone calorimeter tests. The phosphorus-containing polysulfone enhanced the thermal stability of EP. The more stable porous char layer, less flammable gases, and a lower apparent activation energy at a high degree of conversion demonstrated the high gas inhibition effect of phosphorus-containing compounds. Moreover, the gas inhibition effect of polysulfone with a P–C bond was more efficient than the polysulfone with a P–O–C bond. The potential for optimizing flame retardancy while maintaining a high Tg is highlighted in this study. The flame-retardant EP/polysulfone composites with high thermal stability broaden the application field of epoxy.


2014 ◽  
Vol 1033-1034 ◽  
pp. 931-936
Author(s):  
Cong Yan Chen ◽  
Rui Lan Fan ◽  
Guan Qun Yun

A novel intumescent flame retardant (IFR) containing ferrocene and caged bicyclic phosphate groups, 1-oxo-4-[4'-(ferrocene carboxylic acid phenyl ester)] amide-2, 6, 7-trioxa-1-phosphabicyclo- [2.2.2] octane (PFAM), was successfully synthesized. The synthesized PFAM were added to flammable polyurethane (PU) as flame retardants and smoke suppressants. The structure of PFAM was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H NMR) and elemental analysis. Thermal stability of PFAM was tested by themogravimetric analysis (TGA). The results revealed that PFAM had good thermal stability and high char weight, the char weight up to 54% at 600 °C. Flammability properties of PU/PFAM composites were investigated by limiting oxygen index (LOI) test and UL-94 test, respectively. The results of LOI tests showed that the addition of PFAM enhanced flame retardancy of PU. When the content of PFAM reaches to 3%, the LOI value is 22.2. The morphologies of the char for PU and PU/3% PFAM composite can be obtained after LOI testing were examined by SEM. The results demonstrated that PFAM could promote to form the compact and dense intumescent char layer. Experiments showed that, the PFAM application of polyurethane showed positive effect.


Sign in / Sign up

Export Citation Format

Share Document