scholarly journals Measurement of Indoor Radon Concentration in Dalat area

2018 ◽  
Vol 21 (2) ◽  
pp. 71-76 ◽  
Author(s):  
Huy Viet Le

A significant contribution to natural exposure of humans is radon gas, which emanates from the soil and may concentrate in dwellings. The level of radon exposure varies around the globe, but limited data are available on the daily variations of indoor radon concentrations. In this study, indoor radon measurements were performed continuously within one week at six different places in Dalat, Vietnam using the real time Smart Radon Detector Radon Eye+. The indoor radon behavior in a day follows a sine pattern, with peak values in the early morning and lowest values in the late afternoon. There are also some fluctuations at specific times due to different weather conditions. Indoor radon concentrations in the Dalat regions were found to exceed the recommended guidelines and thresholds; excessive radon levels warranting health concern were found (150.7-340.0 Bq/m3). Some corrective actions to reduce indoor radon concentrations were recommended. Annual effective doses on different age categories were also calculated.

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Joan Frédéric Rey ◽  
Stéphane Goyette ◽  
Mauro Gandolla ◽  
Martha Palacios ◽  
Fabio Barazza ◽  
...  

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.


2004 ◽  
Vol 19 (1) ◽  
pp. 46-49 ◽  
Author(s):  
Asiye Ulug ◽  
Melek Karabulut ◽  
Nilgün Celebi

Indoor radon concentration levels at three sites in Turkey were measured using CR-39 solid state nuclear track detectors. The annual mean of radon concentration was estimated on the basis of four quarter measurements at specific locations in Turkey. The measuring sites are on the active faults. The results of radon measurements are based on 280 measurements in doors. The annual arithmetic means of radon concentrations at three sites (Isparta Egirdir, and Yalvac) were found to be 164 Bqm?3, 124 Bqm?3, and 112 Bqm?3 respectively, ranging from 78 Bqm?3 to 279 Bqm?3. The in door radon concentrations were investigated with respect to the ventilation conditions and the age of buildings. The ventilation conditions were determined to be the main factor affecting the in door radon concentrations. The in door radon concentrations in the new buildings were higher than ones found in the old buildings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Dicu ◽  
B. D. Burghele ◽  
M. Botoş ◽  
A. Cucoș ◽  
G. Dobrei ◽  
...  

AbstractThe present study aims to identify novel means of increasing the accuracy of the estimated annual indoor radon concentration based on the application of temporal correction factors to short-term radon measurements. The necessity of accurate and more reliable temporal correction factors is in high demand, in the present age of speed. In this sense, radon measurements were continuously carried out, using a newly developed smart device accompanied by CR-39 detectors, for one full year, in 71 residential buildings located in 5 Romanian cities. The coefficient of variation for the temporal correction factors calculated for combinations between the start month and the duration of the measurement presented a low value (less than 10%) for measurements longer than 7 months, while a variability close to 20% can be reached by measurements of up to 4 months. Results obtained by generalized estimating equations indicate that average temporal correction factors are positively associated with CO2 ratio, as well as the interaction between this parameter and the month in which the measurement took place. The impact of the indoor-outdoor temperature differences was statistically insignificant. The obtained results could represent a reference point in the elaboration of new strategies for calculating the temporal correction factors and, consequently, the reduction of the uncertainties related to the estimation of the annual indoor radon concentration.


2021 ◽  
Vol 80 (17) ◽  
Author(s):  
G. Romero-Mujalli ◽  
A. Roisenberg ◽  
A. Cordova-Gonzalez ◽  
P. H. P. Stefano

AbstractRadon (Rn), a radioactive element, has especial interest in medical geology because long-term exposure to high concentration is related to lung cancer. In this study, outdoor and indoor radon measurements were conducted in dwellings of the Piquiri Syenite Massif, located in southern Brazil, given the relative high Rn content in soils of this region. Measurements were done using CR-39 detectors and placing them inside and outside dwellings. Moreover, a one-dimensional diffusion model was performed in order to quantify the natural transport of Rn to the air in confined and aerated environments. Results indicate that the region presents relatively low air Rn concentrations, within the environmental limits; however, the health risk might increase in confined and ill-ventilated environments because of transfer from soil and exhalation from ornamental rock-material often found inside dwellings. The main north facies of the syenite, where most of the rock extractions are located, was found to have the highest air Rn concentration because of the higher soil Rn concentration, compared to other facies of the syenite.


Author(s):  
Mohammademad Adelikhah ◽  
Amin Shahrokhi ◽  
Morteza Imani ◽  
Stanislaw Chalupnik ◽  
Tibor Kovács

A comprehensive study was carried out to measure indoor radon/thoron concentrations in 78 dwellings and soil-gas radon in the city of Mashhad, Iran during two seasons, using two common radon monitoring devices (NRPB and RADUET). In the winter, indoor radon concentrations measured between 75 ± 11 to 376 ± 24 Bq·m−3 (mean: 150 ± 19 Bq m−3), whereas indoor thoron concentrations ranged from below the Lower Limit of Detection (LLD) to 166 ± 10 Bq·m−3 (mean: 66 ± 8 Bq m−3), while radon and thoron concentrations in summer fell between 50 ± 11 and 305 ± 24 Bq·m−3 (mean 115 ± 18 Bq m−3) and from below the LLD to 122 ± 10 Bq m−3 (mean 48 ± 6 Bq·m−3), respectively. The annual average effective dose was estimated to be 3.7 ± 0.5 mSv yr−1. The soil-gas radon concentrations fell within the range from 1.07 ± 0.28 to 8.02 ± 0.65 kBq·m−3 (mean 3.07 ± 1.09 kBq·m−3). Finally, indoor radon maps were generated by ArcGIS software over a grid of 1 × 1 km2 using three different interpolation techniques. In grid cells where no data was observed, the arithmetic mean was used to predict a mean indoor radon concentration. Accordingly, inverse distance weighting (IDW) was proven to be more suitable for predicting mean indoor radon concentrations due to the lower mean absolute error (MAE) and root mean square error (RMSE). Meanwhile, the radiation health risk due to the residential exposure to radon and indoor gamma radiation exposure was also assessed.


2020 ◽  
Vol 35 (4) ◽  
pp. 339-346
Author(s):  
Mehmet Erdogan ◽  
Murat Abaka ◽  
Kaan Manisa ◽  
Hasan Bircan ◽  
Coskun Kus ◽  
...  

Indoor radon activity concentrations and radon doses on the ground floor and basement floor of 19 schools (kindergardens, primary schools, secondary schools, and high schools) and thermal spas of Ilgin district in Konya, have been measured using the AlphaGUARD PQ 2000PRO radon detector, for three days in the first half of 2016. According to the results, while the indoor radon concentration for only one location, in total, is above the Turkish action level of 400 Bqm?3, the values for 10 locations are above the reference level of 100 Bqm?3, recommended by WHO. The calculated annual effective doses for inhalation of the radon in indoor air were also found to be 0.26 ?Sv for the minimum and 4.36 ?Sv for the maximum. The parametric distribution analysis is also performed with 3-parameter Weibull distribution and some remarks are provided on radon concentration activity.


2021 ◽  
Vol 14 (4) ◽  
pp. 309-316

Abstract: The aim of the current study was to measure indoor radon concentration levels and its resulting doses received by the students and staff in schools of the directorate of education in the north of Hebron region- Palestine, during the summer months from June to September (2018), using CR-39 detectors. In this study, a total of 567 CR-39-based radon detectors were installed in the selected schools. The average radon concentrations were found to be 90.0, 66.5 and 58.0 Bqm-3 in Halhul, Beit Umar and Alarrub camp schools, respectively. Based on the measured indoor radon data, the overall average effective dose for the studied area was found to be 0.31 mSvy-1. Reported values for radon concentrations and corresponding doses are lower than ICRP recommended limits for workplaces. The results show no significant radiological risk for the pupils and staff in the schools under investigation. Consequently, the health hazards related to radiation are expected to be negligible. Keywords: Radon concentration, Alpha particles, Annual effective dose, Schools. PACs: 29.40.−n.


2020 ◽  
Vol 191 (2) ◽  
pp. 219-222
Author(s):  
Tatiana Petrova ◽  
Petr Miklyaev

Abstract Continuous indoor radon measurements were carried out in two traditional Russian rural houses located in different villages of the Moscow region in summer of 2017 and 2018. In additional, in the summer of 2017, continuous measurements of soil gas radon activity concentration at depth 0.8 m and radon exhalation rate from the ground surface near the house were performed simultaneously. It was found that the indoor radon concentration in rural houses is subject to strong daily variations, which are characterized by highs at night and lows during the day. Indoor radon concentration is directly proportional to indoor and outdoor temperature difference and inversely proportional to wind speed. While the radon exhalation rate from the ground surface, as well as the ventilation of premises (opening doors and windows) practically do not affect the concentration of radon in Russian rural wooden houses.


2010 ◽  
Vol 10 (4) ◽  
pp. 857-863 ◽  
Author(s):  
G. K. Gillmore ◽  
N. Jabarivasal

Abstract. This paper presents results of a reconnaissance study that used CR-39 alpha track-etch detectors to measure radon concentrations in dwellings in Hamadan, western Iran, significantly, built on permeable alluvial fan deposits. The indoor radon levels recorded varied from 4 (i.e. below the lower limit of detection for the method) to 364 Bq/m3 with a mean value of 108 Bq/m3 which is 2.5 times the average global population-weighted indoor radon concentration – these data augment the very few published studies on indoor radon levels in Iran. The maximum radon concentration in Hamadan occurs during the winter period (January to March) with lower concentrations during the autumn. The effective dose equivalent to the population in Hamadan is estimated from this study to be in the region of 2.7 mSv/y, which is above the guidelines for dose to a member of the public of 1 mSv/y suggested by the International Commission on Radiological Protection (ICRP) in 1993. This study supports other work in a number of countries that indicates such permeable "surficial" deposits as being of intermediate to high radon potential. In western Iran, the presence of hammered clay floors, the widespread presence of excavated qanats, the textural properties of surficial deposits and human behaviour intended to cope with winds are likely to be important factors influencing radon concentrations in older buildings.


2020 ◽  
Vol 191 (2) ◽  
pp. 133-137
Author(s):  
Z Curguz ◽  
G Venoso ◽  
Z S Zunic ◽  
D Mirjanic ◽  
M Ampollini ◽  
...  

Abstract The requirements about radon measurements in schools and public buildings included in most of the national and international legislations are generally restricted to all the rooms located at the ground floor and basement, assuming the soil beneath the building as the main source of indoor radon. In order to verify such an assumption for small buildings having at maximum two floors, a preliminary study was performed in 50 schools located in 15 municipalities of the Republic of Srpska. Results of this study suggest that a protocol requiring measurements at the ground floor only may be considered adequate. Due to the high radon spatial variability for rooms at the ground floor, it is preferable to require measurements in a high number of rooms (preferably in all of them) in order to assess the compliance with the reference level established by the legislation.


Sign in / Sign up

Export Citation Format

Share Document