scholarly journals A new design of the Lobe pump is based on the meshing principle of elliptical gear pairs

Author(s):  
Thai Hong Nguyen ◽  
Nguyễn Duy Long

The paper presents a new rotor design of an external coupling Lobe pump driven by pair of elliptical gears. The new rotor is a four-tooth elliptical gear with tooth profile is a improve cylocid curve. The improve cylocid curve is the locus of the fixed point on the generation circle, when the circle a pure rolling without slipping on the elliptical centrode of the rotor. The conditions of the rotor addendum and dedendum profiles are also considered. The limited supply angle addendum and dedendum rotor profiles are determined through an iterative algorithm when the generation circle makes a pure rolling without slipping on the ellipse base of the rotor. From there, we proceed to determine the pump design parameters according to the characteristic design parameters forming the rotor profile. The flow rate of the pump is determined by the area of the pockets on a cross-section perpendicular to the pump shaft. On that basis, a Matlab program is written from the mathematical model established by the paper to calculate the rotor design. In addition, the paper also investigates the effect of the coefficient l (semi-major axis divided semi-minor axis of the elliptical centrode ) on the average flow and axis distance. Survey results show that the design at l = 0.5 flow is 52.17% larger and the axis distance is reduced by 21.43% when compared to the traditional design at l = 1. This is the advantage of the new design proposed by this study.

1997 ◽  
Vol 21 (2) ◽  
pp. 109-121 ◽  
Author(s):  
G. Mimmi ◽  
P. Pennacchi

The subject of this paper is the theoretical analysis of the internal lobe pump which is a particular type of positive displacement rotary pump. The main components of the pump are the rotors: usually the outer one is characterised by lobes with circular shape, while the inner rotor profile is determined as conjugate to the other. For this reason the first topic presented here is the definition of the geometry of the rotors starting from the design parameters. The choice of these parameters is subject to some limitations in order to avoid inner rotor undercutting and to limit the pressure angle between the rotors. Now we will consider the design optimisation. The first step is the determination of the instantaneous flow rate as a function of the design parameters. This allows us to calculate two performance indexes commonly used for the study of positive displacement pumps: the flow rate irregularity and the specific flow rate. These indexes are used to optimise the design of the pump and to obtain the sets of optimum design parameters. Finally further considerations are presented regarding the calculation and the use of other performance indexes, the specific slipping and the rotor curvature, which are particularly suitable for giving more elements for the analysis of this case.


1997 ◽  
Vol 161 ◽  
pp. 299-311 ◽  
Author(s):  
Jean Marie Mariotti ◽  
Alain Léger ◽  
Bertrand Mennesson ◽  
Marc Ollivier

AbstractIndirect methods of detection of exo-planets (by radial velocity, astrometry, occultations,...) have revealed recently the first cases of exo-planets, and will in the near future expand our knowledge of these systems. They will provide statistical informations on the dynamical parameters: semi-major axis, eccentricities, inclinations,... But the physical nature of these planets will remain mostly unknown. Only for the larger ones (exo-Jupiters), an estimate of the mass will be accessible. To characterize in more details Earth-like exo-planets, direct detection (i.e., direct observation of photons from the planet) is required. This is a much more challenging observational program. The exo-planets are extremely faint with respect to their star: the contrast ratio is about 10−10at visible wavelengths. Also the angular size of the apparent orbit is small, typically 0.1 second of arc. While the first point calls for observations in the infrared (where the contrast goes up to 10−7) and with a coronograph, the latter implies using an interferometer. Several space projects combining these techniques have been recently proposed. They aim at surveying a few hundreds of nearby single solar-like stars in search for Earth-like planets, and at performing a low resolution spectroscopic analysis of their infrared emission in order to reveal the presence in the atmosphere of the planet of CO H2O and O3. The latter is a good tracer of the presence of oxygen which could be, like on our Earth, released by biological activity. Although extremely ambitious, these projects could be realized using space technology either already available or in development for others missions. They could be built and launched during the first decades on the next century.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 183
Author(s):  
Yongjie Liu ◽  
Yu Jiang ◽  
Hengnian Li ◽  
Hui Zhang

This paper intends to show some special types of orbits around Jupiter based on the mean element theory, including stationary orbits, sun-synchronous orbits, orbits at the critical inclination, and repeating ground track orbits. A gravity model concerning only the perturbations of J2 and J4 terms is used here. Compared with special orbits around the Earth, the orbit dynamics differ greatly: (1) There do not exist longitude drifts on stationary orbits due to non-spherical gravity since only J2 and J4 terms are taken into account in the gravity model. All points on stationary orbits are degenerate equilibrium points. Moreover, the satellite will oscillate in the radial and North-South directions after a sufficiently small perturbation of stationary orbits. (2) The inclinations of sun-synchronous orbits are always bigger than 90 degrees, but smaller than those for satellites around the Earth. (3) The critical inclinations are no-longer independent of the semi-major axis and eccentricity of the orbits. The results show that if the eccentricity is small, the critical inclinations will decrease as the altitudes of orbits increase; if the eccentricity is larger, the critical inclinations will increase as the altitudes of orbits increase. (4) The inclinations of repeating ground track orbits are monotonically increasing rapidly with respect to the altitudes of orbits.


Author(s):  
Jérôme Daquin ◽  
Elisa Maria Alessi ◽  
Joseph O’Leary ◽  
Anne Lemaitre ◽  
Alberto Buzzoni

Author(s):  
Jorge Peñarrubia

Abstract This paper uses statistical and N-body methods to explore a new mechanism to form binary stars with extremely large separations (≳ 0.1 pc), whose origin is poorly understood. Here, ultra-wide binaries arise via chance entrapment of unrelated stars in tidal streams of disrupting clusters. It is shown that (i) the formation of ultra-wide binaries is not limited to the lifetime of a cluster, but continues after the progenitor is fully disrupted, (ii) the formation rate is proportional to the local phase-space density of the tidal tails, (iii) the semimajor axis distribution scales as p(a)da ∼ a1/2da at a ≪ D, where D is the mean interstellar distance, and (vi) the eccentricity distribution is close to thermal, p(e)de = 2ede. Owing to their low binding energies, ultra-wide binaries can be disrupted by both the smooth tidal field and passing substructures. The time-scale on which tidal fluctuations dominate over the mean field is inversely proportional to the local density of compact substructures. Monte-Carlo experiments show that binaries subject to tidal evaporation follow p(a)da ∼ a−1da at a ≳ apeak, known as Öpik’s law, with a peak semi-major axis that contracts with time as apeak ∼ t−3/4. In contrast, a smooth Galactic potential introduces a sharp truncation at the tidal radius, p(a) ∼ 0 at a ≳ rt. The scaling relations of young clusters suggest that most ultra-wide binaries arise from the disruption of low-mass systems. Streams of globular clusters may be the birthplace of hundreds of ultra-wide binaries, making them ideal laboratories to probe clumpiness in the Galactic halo.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341008
Author(s):  
TAIQING DENG ◽  
LIANXI HU ◽  
YU SUN ◽  
XIAOYA LIU

The deformation behavior during axisymmetric upsetting of sintered metals has been studied based on the finite-element method. The investigation on the effects of the initial density distribution, void shape and die friction on the density distribution and punch force during deformation have been conducted. It was found that under low-friction conditions, the initial density distribution affects the deformation geometry and the density distribution. However, the effect of the initial density distribution was found to be negligible under high-friction conditions. The initial density distribution did not affect the punch force or the average density, regardless of the friction conditions. When the force is perpendicular to semi-major axis of elliptical void, it is not only good for densification but also decrease the punch force in forging of porous metal.


Author(s):  
Levi D. DeVries ◽  
Michael D. M. Kutzer ◽  
Rebecca E. Richmond ◽  
Archie C. Bass

Autonomous underwater vehicles (AUVs) have shown great promise in fulfilling surveillance, scavenging, and monitoring tasks, but can be hindered in expansive, cluttered or obstacle ridden environments. Traditional gliders and streamlined AUVs are designed for long term operational efficiency in expansive environments, but are hindered in cluttered spaces due to their shape and control authority; agile AUVs can penetrate cluttered or sensitive environments but are limited in operational endurance at large spatial scales. This paper presents the prototype testbed design, modeling, and experimental hydrodynamic drag characterization of a novel self-propelled underwater vehicle capable of actuating its shape morphology. The vehicle prototype incorporates flexible, buckled fiberglass ribs to ensure a rigid shape that can be actuated by modulating the length of the semi-major axis. Tools from generative modeling are used to represent the vehicle shape by using a single control input actuating the vehicles length-to-diameter ratio. By actuating the length and width characteristics of the vehicle’s shape to produce a desired drag profile, we derive the feasible speeds achievable by shape actuation control. Tow-tank experiments with an experimental proto-type suggest shape actuation can be used to manipulate the drag by a factor between 2.15 and 5.8 depending on the vehicle’s operating speed.


Author(s):  
Brahim Boussidi ◽  
Peter Cornillon ◽  
Gavino Puggioni ◽  
Chelle Gentemann

This study was undertaken to derive and analyze the Advanced Microwave Scanning Radiometer - EOS (AMSR-E) sea surface temperature (SST) footprint associated with the Remote Sensing Systems (RSS) Level-2 (L2) product. The footprint, in this case, is characterized by the weight attributed to each 4 4 km square contributing to the SST value of a given AMSR-E pixel. High-resolution L2 SST fields obtained from the MODerate-resolution Imaging Spectroradiometer (MODIS), carried on the same spacecraft as AMSR-E, are used as the sub-resolution “ground truth“ from which the AMSR-E footprint is determined. Mathematically, the approach is equivalent to a linear inversion problem, and its solution is pursued by means of a constrained least square approximation based on the bootstrap sampling procedure. The method yielded an elliptic-like Gaussian kernel with an aspect ratio 1.58, very close to the AMSR-E 6.93GHz channel aspect ratio, 1.7. (The 6.93GHz channel is the primary spectral frequency used to determine SST.) The semi-major axis of the estimated footprint is found to be alignedwith the instantaneous field-of-view of the sensor as expected fromthe geometric characteristics of AMSR-E. Footprintswere also analyzed year-by-year and as a function of latitude and found to be stable – no dependence on latitude or on time. Precise knowledge of the footprint is central for any satellite-derived product characterization and, in particular, for efforts to deconvolve the heavily oversampled AMSR-E SST fields and for studies devoted to product validation and comparison. A preliminarly analysis suggests that use of the derived footprint will reduce the variance between AMSR-E and MODIS fields compared to the results obtained.


Sign in / Sign up

Export Citation Format

Share Document