scholarly journals On predicting highy the y expressed genes for Escherichia coli based on mRNA microarray data

Author(s):  
Nam Tri Vo ◽  
Nghia Trung Pham ◽  
Nhat Ha Minh Truong ◽  
Thuoc Linh Tran ◽  
Hoang Duc Nguyen

Highly expressed genes [HEG] are genees available in the organism, which carry the preferred codons for the expression system. Identifying HEG helps to find preferred codons and use them in the gene optimization to express target protein. Currently, HEG-DB are the only database to store HEG data of many strains of microorganisms, but the data are still not updated and maintained. Therefore, our research is carried out to predict HEG in the E. coli K-12 MG1655 strain based on reference sets that are the mostly used ribosomal protein coding genes and genes with high transcription levels from microarray data proposed by the research. Next, the results of HEG from the two above reference sets, HEG-RP and HEG-mRNA, were compared. Finally, we analyzed and compared the HEG that the project predicted with HEG from HEG-DB database. The results from RP and 100-mRNA reference sets were completely identical and were better than data from HEG-DB in the number of HEGs, CAI values and the number of genes contributing to important metabolic pathways. The results showed that it was possible to use reference sets from mRNA microarray data instead of ribosomal protein reference sets in HEG prediction

1998 ◽  
Vol 64 (5) ◽  
pp. 1805-1811 ◽  
Author(s):  
B. S. Rajagopal ◽  
Joseph DePonte ◽  
Mendel Tuchman ◽  
Michael H. Malamy

ABSTRACT The goal of this work was to construct Escherichia colistrains capable of enhanced arginine production. The arginine biosynthetic capacity of previously engineered E. colistrains with a derepressed arginine regulon was limited by the availability of endogenous ornithine (M. Tuchman, B. S. Rajagopal, M. T. McCann, and M. H. Malamy, Appl. Environ. Microbiol. 63:33–38, 1997). Ornithine biosynthesis is limited due to feedback inhibition by arginine of N-acetylglutamate synthetase (NAGS), the product of the argA gene and the first enzyme in the pathway of arginine biosynthesis in E. coli. To circumvent this inhibition, the argA genes from E. coli mutants with feedback-resistant (fbr) NAGS were cloned into plasmids that contain “arg boxes,” which titrate the ArgR repressor protein, with or without the E. coli carABgenes encoding carbamyl phosphate synthetase and the argIgene for ornithine transcarbamylase. The free arginine production rates of “arg-derepressed” E. coli cells overexpressing plasmid-encoded carAB, argI, and fbr argA genes were 3- to 15-fold higher than that of an equivalent system overexpressing feedback-sensitive wild-type (wt)argA. The expression system with fbr argAproduced 7- to 35-fold more arginine than a system overexpressingcarAB and argI genes on a plasmid in a strain with a wt argA gene on the chromosome. The arginine biosynthetic capacity of arg-derepressed DH5α strains with plasmids containing only the fbr argA gene was similar to that of cells with plasmids also containing the carABand argI genes. Plasmids containing wt or fbrargA were stably maintained under normal growth conditions for at least 18 generations. DNA sequencing identified different point mutations in each of the fbr argA mutants, specifically H15Y, Y19C, S54N, R58H, G287S, and Q432R.


1975 ◽  
Vol 141 (1) ◽  
pp. 85-89 ◽  
Author(s):  
H. Saedler ◽  
D. F. Kubai ◽  
M. Nomura ◽  
S. R. Jaskunas

Author(s):  
Harneet S. Rishi ◽  
Esteban Toro ◽  
Honglei Liu ◽  
Xiaowo Wang ◽  
Lei S. Qi ◽  
...  

ABSTRACTGenome-wide repression screens using CRISPR interference (CRISPRi) have enabled the high-throughput identification of essential genes in bacteria. However, there is a lack of functional studies leveraging CRISPRi to systematically explore targeting of both the coding and non-coding genome in bacteria. Here we perform CRISPRi screens in Escherichia coli MG1655 K-12 targeting ~13,000 genomic features, including nearly all protein-coding genes, non-coding RNAs, promoters, and transcription factor binding sites (TFBSs) using a ~33,000-member sgRNA library, which represents the most compact and comprehensive genome-wide CRISPRi library in E. coli to date. Our data reveal insights into the conditional essentiality of the genome with key refinements to screen design and profiling. First, we demonstrate that strong fitness defects associated with essential cellular processes can be resolved using inducible time-series measurements. We show that knockdowns of different classes of genes exhibit distinct, transient responses that are correlated to gene function with genes involved in translation exhibiting the strongest responses. We also query feature essentiality across several biochemical conditions and show that several genes, sRNAs, and operons exhibit conditional phenotypes not reported by previous high-throughput efforts. Second, we evaluate systematically targeting non-genic features (promoters and TFBSs) in the E. coli genome. We show that promoter-targeting guides can be used to add phenotypic confidence to promoter annotations and verify computationally predicted promoters. In contrast to prior studies, we find that promoter knockdowns exhibit a strong targeting orientation dependency where targeting the non-template strand of the promoter closest to the target gene is more effective in knocking down gene expression than other promoter targeting orientations. Unlike eukaryotic genomes, we note that interpreting the effects of TFBS targeting is particularly challenging due to the small size of such features and their proximity to and overlap with other genomic features. Together, this work reveals novel conditionally essential gene phenotypes, provides a characterized set of sgRNAs for future E. coli CRISPRi screens, and highlights considerations for CRISPRi library design and screening for microbial genome characterization.


2001 ◽  
Vol 67 (3) ◽  
pp. 1253-1261 ◽  
Author(s):  
W. M. Russell ◽  
T. R. Klaenhammer

ABSTRACT The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31 ). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in otherLactobacillus species tested.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Carlos-Francisco Méndez-Cruz ◽  
Antonio Blanchet ◽  
Alan Godínez ◽  
Ignacio Arroyo-Fernández ◽  
Socorro Gama-Castro ◽  
...  

Abstract Transcription factors (TFs) play a main role in transcriptional regulation of bacteria, as they regulate transcription of the genetic information encoded in DNA. Thus, the curation of the properties of these regulatory proteins is essential for a better understanding of transcriptional regulation. However, traditional manual curation of article collections to compile descriptions of TF properties takes significant time and effort due to the overwhelming amount of biomedical literature, which increases every day. The development of automatic approaches for knowledge extraction to assist curation is therefore critical. Here, we show an effective approach for knowledge extraction to assist curation of summaries describing bacterial TF properties based on an automatic text summarization strategy. We were able to recover automatically a median 77% of the knowledge contained in manual summaries describing properties of 177 TFs of Escherichia coli K-12 by processing 5961 scientific articles. For 71% of the TFs, our approach extracted new knowledge that can be used to expand manual descriptions. Furthermore, as we trained our predictive model with manual summaries of E. coli, we also generated summaries for 185 TFs of Salmonella enterica serovar Typhimurium from 3498 articles. According to the manual curation of 10 of these Salmonella typhimurium summaries, 96% of their sentences contained relevant knowledge. Our results demonstrate the feasibility to assist manual curation to expand manual summaries with new knowledge automatically extracted and to create new summaries of bacteria for which these curation efforts do not exist. Database URL: The automatic summaries of the TFs of E. coli and Salmonella and the automatic summarizer are available in GitHub (https://github.com/laigen-unam/tf-properties-summarizer.git).


Author(s):  
Jasmin Kaur Jasuja ◽  
Stefan Zimmermann ◽  
Irene Burckhardt

AbstractOptimisation of microbiological diagnostics in primarily sterile body fluids is required. Our objective was to apply EUCAST’s RAST on primarily sterile body fluids in blood culture bottles with total lab automation (TLA) and to compare results to our reference method Vitek2 in order to report susceptibility results earlier. Positive blood culture bottles (BACTEC™ Aerobic/Anaerobic/PEDS) inoculated with primarily sterile body fluids were semi-automatically subcultured onto Columbia 5% SB agar, chocolate agar, MacConkey agar, Schaedler/KV agar and Mueller-Hinton agar. On latter, cefoxitin, ampicillin, vancomycin, piperacillin/tazobactam, meropenem and ciprofloxacin were added. After 6 h, subcultures and RAST were imaged and MALDI-TOF MS was performed. Zone sizes were digitally measured and interpreted following RAST breakpoints for blood cultures. MIC values were determined using Vitek2 panels. During a 1-year period, 197 Staphylococcus aureus, 91 Enterococcus spp., 38 Escherichia coli, 11 Klebsiella pneumoniae and 8 Pseudomonas aeruginosa were found. Categorical agreement between RAST and MIC was 96.5%. Comparison showed no very major errors, 2/7 (28.6%) and 1/7 (14.3%) of major errors for P. aeruginosa and meropenem and ciprofloxacin, 1/9 (11.1%) for K. pneumoniae and ciprofloxacin, 4/69 (7.0%) and 3/43 (5.8%) for Enterococcus spp. and vancomycin and ampicillin, respectively. Minor errors for P. aeruginosa and meropenem (1/8; 12.8%) and for E. coli and ciprofloxacin (2/29; 6.5%) were found. 30/550 RAST measurements were within area of technical uncertainty. RAST is applicable and performs well for primarily sterile body fluids in blood culture bottles, partially better than blood-based RAST. Official EUCAST evaluation is needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masuzu Kikuchi ◽  
Keiichi Kojima ◽  
Shin Nakao ◽  
Susumu Yoshizawa ◽  
Shiho Kawanishi ◽  
...  

AbstractMicrobial rhodopsins are photoswitchable seven-transmembrane proteins that are widely distributed in three domains of life, archaea, bacteria and eukarya. Rhodopsins allow the transport of protons outwardly across the membrane and are indispensable for light-energy conversion in microorganisms. Archaeal and bacterial proton pump rhodopsins have been characterized using an Escherichia coli expression system because that enables the rapid production of large amounts of recombinant proteins, whereas no success has been reported for eukaryotic rhodopsins. Here, we report a phylogenetically distinct eukaryotic rhodopsin from the dinoflagellate Oxyrrhis marina (O. marina rhodopsin-2, OmR2) that can be expressed in E. coli cells. E. coli cells harboring the OmR2 gene showed an outward proton-pumping activity, indicating its functional expression. Spectroscopic characterization of the purified OmR2 protein revealed several features as follows: (1) an absorption maximum at 533 nm with all-trans retinal chromophore, (2) the possession of the deprotonated counterion (pKa = 3.0) of the protonated Schiff base and (3) a rapid photocycle through several distinct photointermediates. Those features are similar to those of known eukaryotic proton pump rhodopsins. Our successful characterization of OmR2 expressed in E. coli cells could build a basis for understanding and utilizing eukaryotic rhodopsins.


Genetics ◽  
1990 ◽  
Vol 125 (4) ◽  
pp. 691-702 ◽  
Author(s):  
B L Berg ◽  
V Stewart

Abstract Formate oxidation coupled to nitrate reduction constitutes a major anaerobic respiratory pathway in Escherichia coli. This respiratory chain consists of formate dehydrogenase-N, quinone, and nitrate reductase. We have isolated a recombinant DNA clone that likely contains the structural genes, fdnGHI, for the three subunits of formate dehydrogenase-N. The fdnGHI clone produced proteins of 110, 32 and 20 kDa which correspond to the subunit sizes of purified formate dehydrogenase-N. Our analysis indicates that fdnGHI is organized as an operon. We mapped the fdn operon to 32 min on the E. coli genetic map, close to the genes for cryptic nitrate reductase (encoded by the narZ operon). Expression of phi(fdnG-lacZ) operon fusions was induced by anaerobiosis and nitrate. This induction required fnr+ and narL+, two regulatory genes whose products are also required for the anaerobic, nitrate-inducible activation of the nitrate reductase structural gene operon, narGHJI. We conclude that regulation of fdnGHI and narGHJI expression is mediated through common pathways.


Sign in / Sign up

Export Citation Format

Share Document