Multiwave Total Focusing Method for Full-Matrix Imaging Using Ultrasonic Phased Array

2021 ◽  
Vol 79 (12) ◽  
pp. 1179-1188
Author(s):  
Ping Zhang ◽  
Shou-Gou Yan ◽  
Yu-Xiang Dai ◽  
Juan Huang ◽  
Chao Kong ◽  
...  

The imaging range of the traditional total focusing method (TFM) is usually limited by the directivity of excitation of a single wave pattern. In this paper, a multiwave TFM technique is proposed, which uses both compression and shear vertical (SV) waves for detection and imaging simultaneously. Based on this technique, a special ultrasonic transducer for multiwave detection is designed that can balance the excitation amplitude of compression and SV waves. Multiwave TFM uses the compression and SV wave fields generated by the same excitation, and the signals reflected by the two sound fields passing through the discontinuity are received. The signals are respectively processed by TFM according to the compression and SV wave velocities. The two processed signals are shifted and aligned according to the time difference between the compression wave with SV wave propagation, and then added together. Finally, the detection image of the block is obtained. Through simulation and experiments, it is shown that the special transducer can optimize the imaging range and effect of multiwave TFM, and multiwave TFM can effectively detect discontinuities and reduce the rate of missed detection at higher steering angles. The detection results show that the maximum amplitude gain of multiwave TFM relative to TFM can be increased about 6 dB.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1244 ◽  
Author(s):  
Xue-Jiao Jiang ◽  
Meng-Wei Liu ◽  
Fang-Fang Shi ◽  
Wen Wang ◽  
Xian-Mei Wu ◽  
...  

In this paper, a microscale high-frequency ultrasonic transducer was prepared by combining traditional planar ultrasonic phased-array technology and micro processing technology. The piezoelectric ceramic material PZT was used as the functional material of the transducer. The number of the arrays was 72, the width of each array was 50 μm, the pitch of each array was 70 μm, and the length of each array was 3 mm. The PZT chip was finely ground to a thickness of 130 μm and could reach a frequency of 10 MHz. The experimental platform of micron-scale precision was set up for a beam-forming lateral sound field test and imaging experiment to validate the theoretical analysis. The echo imaging test showed that a mold with a feature size of about 400 μm could be imaged well.


2012 ◽  
Vol 622-623 ◽  
pp. 1524-1527
Author(s):  
Jing Huang ◽  
She Yu Zhou ◽  
Pei Wen Que

A novel automatic ultrasonic system used for the inspection of welds in T nodes is developed, in which a linear phased array transducer using electronic scan is adopted. This paper introduces the testing method of welds in T nodes, and the structure of the whole testing system. Optimization of array transducer has been also pursued based on a mathematical model of acoustic field for linear phased array. The experimental results have proved that the phased array transducer system had the same detectability as that of conventional ultrasonic transducer system, but the component part of the system can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly. It provides an excellent base for the further research and development of the defect inspection of welds in TKY nodes.


Author(s):  
Gianni Allevato ◽  
Jan Hinrichs ◽  
Matthias Rutsch ◽  
Jan Adler ◽  
Axel Jager ◽  
...  

2005 ◽  
Vol 127 (3) ◽  
pp. 336-344 ◽  
Author(s):  
Shyamal C. Mondal ◽  
Paul D. Wilcox ◽  
Bruce W. Drinkwater

Two-dimensional (2D) phased arrays have the potential to significantly change the way in which engineering components in safety critical industries are inspected. In addition to enabling a three-dimensional (3D) volume of a component to be inspected from a single location, they could also be used in a C-scan configuration. The latter would enable any point in a component to be interrogated over a range of solid angles, allowing more accurate defect characterization and sizing. This paper describes the simulation and evaluation of grid, cross and circular 2D phased array element configurations. The aim of the cross and circle configurations is to increase the effective aperture for a given number of elements. Due to the multitude of possible array element configurations a model, based on Huygens’ principle, has been developed to allow analysis and comparison of candidate array designs. In addition to the element configuration, key issues such as element size, spacing, and frequency are discussed and quantitatively compared using the volume of the 3D point spread function (PSF) as a measurand. The results of this modeling indicate that, for a given number of elements, a circular array performs best and that the element spacing should be less than half a wavelength to avoid grating lobes. A prototype circular array has been built and initial results are presented. These show that a flat bottomed hole, half a wavelength in diameter, can be imaged. Furthermore, it is shown that the volume of the 3D reflection obtained experimentally from the end of the hole compares well with the volume of the 3D PSF predicted for the array at that point.


Sign in / Sign up

Export Citation Format

Share Document