scholarly journals Residue Content of Organophosphorus Pesticides and their Toxic Metabolites in Greenhouse-Grown Tomatoes during Pre-Harvest Interval and Post-Harvest Processing: A Kinetic Study

Background: Organophosphorus pesticides (OPPs) have a wide application throughout the world and exert adverse effects on human health. Moreover, these chemical compounds are responsible for thousands of deaths per year worldwide. Kinetic and mathematical models could be used to optimize the application of pesticides on fruits and vegetables and monitor their residues. Objectives: The present study aimed to model the dissipation of diazinon and chlorpyrifos in different conditions, such as household conditions (e.g., storage at room and refrigerator temperatures, as well as cooking) and field condition for greenhouse tomatoes. Methods: A multi-residue analysis of diazinon, chlorpyrifos, and their oxon derivatives was established by gas chromatography-tandem mass spectrometry. The limit of quantification (LOQ), recovery, precision, linearity, and the limit of detection (LOD) were evaluated to ensure that the method was able to effectively determine the studied pesticides in the tomato samples. The linear and nonlinear kinetic models were presented for chlorpyrifos and diazinon residues in tomato using zero-order, first-order, and second-order equations. Results: Based on the best fitting models for diazinon in the case of laboratory treatment at the refrigerator, room, and boiling temperatures, the half-lives were calculated as 18.79 days, 11.41 days, and 45.39 min, respectively. The half-life of diazinon was lower than that of chlorpyrifos in both field and laboratory treatments. Conclusion: Modeling the removal of the pesticides indicated that the nonlinear first- and second-order models were the best fitted models for the dissipation of both pesticides in field and post-harvest conditions.

2018 ◽  
Vol 16 (1) ◽  
pp. 81-93
Author(s):  
MDH Prodhan ◽  
SN Alam

Determination of organochlorine pesticide residues in shrimp is very important to ensure the consumer’s safety and to fulfill the importer’s demand. Therefore, a simple and efficient multiple organochlorine pesticide residues analytical method using quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction technique and Gas Chromatography coupled with Electron Capture Detector (ECD) has been developed and validated for the determination of 19 organochlorine pesticides (α- BHC, δ- BHC, β- BHC, γ- BHC, Heptachlor, Aldrin, Heptachlor Epoxide, γ- Chlordane, α- Chlordane, α- Endosulfan, 4,4 DDE, Dieldrin, Endrin, 4,4 DDD, β- Endosulfan, 4,4 DDT, Endosulfan sulphate, Methoxychlor, and Endrin Ketone) in shrimp. The method was validated by evaluating the accuracy, precision, linearity, limit of detection (LOD) and limit of quantification (LOQ). The average recoveries of the selected pesticides ranged from 84% to 106% with RSDr ≤ 14% in four fortification levels of 0.05, 0.1, 0.2 and 0.3 mg kg-1. The linearity was ≥ 0.996 for all of the selected pesticides with matrix matched calibration standards. The LOD ranged from 0.003 to 0.009 mg kg-1 and the LOQ was 0.05 mg kg-1. This method was applied successfully for the residue analysis of 40 shrimp samples collected from different regions in Bangladesh.SAARC J. Agri., 16(1): 81-93 (2018)


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1274
Author(s):  
Catarina Ferreira ◽  
Filipa Lopes ◽  
Reginaldo Costa ◽  
Norton Komora ◽  
Vânia Ferreira ◽  
...  

In addition to environmental pollution issues, social concerns about the sustainability, safety, and quality of conventionally grown fruits and vegetables have been increasing. In order to evaluate if there were any microbiological differences between samples of organic and conventional lettuce, a wide range of parameters were tested, including pathogens and indicator organisms: the enumeration of Escherichia coli; the detection of Salmonella spp.; the detection/enumeration of Listeria monocytogenes; the enumeration of lactic acid bacteria, Pseudomonas spp. yeasts and molds, and Enterobacteriaceae. This study also evaluated the chemical safety of the lettuce samples, quantifying the nitrate concentration and 20 pesticides (14 organochlorine and 6 organophosphorus pesticides). Significant differences (p < 0.05) between the conventional and organic samples were only detected for the counts of total microorganisms at 30 °C. Pathogens were absent in all the samples. The analytical method, using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach for pesticide extraction, was suitable for detecting the targeted analytes; the limit of quantification (LOQ) was between 0.6 and 1.8 µg/kg (lower than the Maximum Residue Levels (MRLs) established by EU legislation). In three organic lettuce samples, one organochlorine pesticide (α-HCH) was observed below the MRLs. For the samples analyzed and for the parameters investigated, except for the total mesophilic counts, the organic and conventional lettuces were not different.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Priya Shetti ◽  
Sunil S. Jalalpure

Abstract Background Apigenin (4′, 5, 7-trihydroxyflavone), a flavonoid, is present usually in fruits and vegetables possessing numerous biological properties like antioxidant, anti-viral, antibacterial, anti-inflammatory, and chemoprevention activity. So present study was aimed to prepare and characterize nanoliposomes of apigenin and estimate its encapsulation efficiency by stability-assisted reverse-phase (RP)-HPLC method. Results The stability indication of the RP-HPLC method developed for apigenin-loaded nanoliposomes was successfully demonstrated and parameters were mainly the retention time which was 4.21 min, limit of detection (LOD) 0.49 μg/mL, limit of quantification (LOQ) 1.48 μg/mL, and %relative standard deviation (RSD) less than 2%. Therefore, the stability indication of the developed reverse-phase HPLC method for apigenin-loaded nanoliposomes was demonstrated successfully and parameters like accuracy, linearity, LOD, LOQ, precision, and %RSD were within the limit range and found to be satisfactory. Conclusion The developed RP-HPLC method was found to be suitable for the quantification or estimation of apigenin with its stability in apigenin-loaded nanoliposomes, and this method will be a powerful tool in the future for the estimation of apigenin present in any pharmaceutical preparations.


2018 ◽  
Vol 18 (2) ◽  
pp. 85-96
Author(s):  
Sarwendah Ratnawati Hermanto ◽  
Roto Roto ◽  
Agus Kuncaka

Saccharin extraction and analysis of drug and food samples was investegated by spectrophotometry ultraviolet (uv) derivative method were studied. The saccharin extraction was carried out using solvent of ethanol/chloroform (2:8 v/v). The limit of detection (LOD) and limit of quantification (LOQ) of the proposed method were  0.50 ppm and 1.82 ppm for the second order and 0.47 ppm and 1.58 ppm for the fourth, while for the zero order were 2,75 ppm and 8,55 ppm. The calibration curve was linear in the concentration range from 20-100 ppm (R2= 0.996 for the second order and R2=0.997 for the fourth). The percent recovery of saccharin was in the range 95.20-104.40% for the second order and 97.20-102.40% for the fourth. The range of saccharin concentration (w/w) in drugs, candies and toothpaste for the fourth derivative were 1.39±0.02 mg/kg until 7.15±0.05 mg/kg, 0.21±0.01 mg/kg until 2.09±0.01 mg/kg, and 0.15±0.03 mg/kg until 0.63±0.04 mg/kg, respectively. 


Author(s):  
Sudeep Mishra ◽  
Lalitesh Kr. Thakur ◽  
Neelam Richhariya

Objective: To validate in-house QuEChERS method, which scrutinizes and quantify the residue levels of some most frequently used organophosphorus pesticides and to prove a complete workflow for routine multi-residue pesticide analysis in representative bottle guard matrices and study the persistence of 23 organ phosphorus pesticides.Methods: QuEChERS (quick, easy, cheap, effective, rugged and safe) extraction method was followed. Method validation and residue screening of bottle guard samples were conducted by GC-FPD (Gas Chromatography-Flame Photometric Detector) were used to analyse the presence of pesticides whereas confirmation of pesticides was done by GC-MS (Gas Chromatographic-Mass Spectrometer). Results: For bottle guard matrix, LOD (limit of detection) and LOQ (limit of quantification) values are lowest for phorate (0.005 mg/kg and 0.015 mg/kg) and highest for parathion-methyl (0.1 mg/kg and 0.3 mg/kg) respectively. Calibration curve, was plotted between an area of 23 pesticide standard mixture against seven different concentration levels of 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.00 mg/kg with regression coefficient (R2) are in the range of 0.978-0.994. The mean recovered amount at 0.05 mg/kg spikeing concentration are in the range of lowest 0.0413 mg/kg to highest 0.0467 mg/kg and relative standard deviation are in the range of lowest 2.2 to highest 8.571.Conclusion: For ensuring exposure to contaminants, especially by dietary intake, Robust analytical methods were validated for carrying out both research and monitoring programmes and thus for defining limitations and supporting enforcement of regulations.


Author(s):  
Mohammad Hamzah Hamzah ◽  
Rawa M M Taqi ◽  
Muna M. Hasan ◽  
Raid J. M. Al-Timimi

A simple and accurate spectrophotometric method for the determination of Trifluoperazine HCl in pure and dosage forms was developed. The method is based on the reaction between Trifluoperazine HCl and p-chloroaniline in the presence of cerium ion as oxidizing agent which lead to the formation of violate color product that absorbed at a maximum wavelength 570nm while the blank solution was pink. Under the optimum conditions a linear relationship between the intensity and concentration of TRF in the range 4-50μg/ml was obtained . The molar absorptivity 3.74×103 L.mol-1.cm-1 , Limit of detection (2.21μg/ml), while limit of quantification was 7.39μg/ml. The proposed analytical method was compared with standard method using t-test and F-test , the obtained results shows there is no significant differences between proposed method and standard method. Based on that the proposed method can be used as an alternative method for the determination of TRF in pure and dosage forms.


2020 ◽  
Vol 16 (4) ◽  
pp. 455-461
Author(s):  
Gabriela M. Baia ◽  
Otniel Freitas-Silva ◽  
Murillo F. Junior

Fruits and vegetables are foods that come into contact with various types of microorganisms from planting to their consumption. A lack or poor sanitation of these products after harvest can cause high losses due to deterioration and/ or pathogenic microorganisms. There are practically no post-harvest fungicides or bactericides with a broad spectrum of action that have no toxic residual effects and are safe. However, to minimize such problems, the use of sanitizers is an efficient device against these microorganisms. Chlorine is the most prevalent sanitizing agent because of its broad spectrum, low cost and well-established practices. However, the inevitable formation of disinfection by-products, such as trihalomethanes (THMs) and haloacetic acids (HAAs), is considered one of the main threats to food safety. Alternative sanitizers, such as chlorine dioxide (ClO2) and ozone, are becoming popular as a substitute for traditional post-harvest treatments. Thus, this review addresses the use of chlorine, chlorine dioxide and ozone emphasizing aspects, such as usage, safe application, spectrum of action and legislation. In order to ensure the quality and safety of final products, the adoption of well-prepared sanitation and sanitation programs for post-harvest fruits and vegetables is essential.


Author(s):  
Sidra Amin ◽  
Amber R. Solangi ◽  
Dilawar Hassan ◽  
Nadir Hussain ◽  
Jamil Ahmed ◽  
...  

Background: In recent years, the occurrence and fate of environmental pollutants has been recognized as one of the emerging issues in environmental chemistry. A survey documented about a wide variety of these pollutants, which are often detected in our environment and these are major cause of shortened life spans and the global warming. These pollutants include toxic metal, pesticides, fertilizers, drugs and dyes released into soil and major water bodies. The presence of these contaminants causes major disturbance in eco-system’s balance. To tackle these issues many technological improvements are made to detect minute contaminations. The latest issue being answered by the scientists is the use of green nano materials as sensors which are economical, instant and give much better results at low concentrations and can be used for the field measurements resulting in no dangerous by-product that could lead to more environmental contamination. Nano materials are known for their wide band gap, enhanced physical and optical properties with option of tuneablity as per need, by optimizing certain parameters. They are proved to be good choice for analytical/optical sensors with high sensitivity. Objective: This review holds information about multiple methods that use green nanomaterials for the analytical assessment of environmental pollutants. UV-Vis spectrophotometry and electrochemical analysis using green and reproducible nanomaterials are the major focus of this review article. To date, there are number of spectrophotometric and electro chemical methods available that have been used for the detection of environmental pollutants such as toxic metals, pesticides and dyes. Conclusion: The use of nanomaterials can drastically change the detection limits due to having large surface area, strong catalytic properties, and tunable possibility. With the use of nano materials, lower than the marked limit of detection and limit of quantification were seen when compared with previously reported work. The used nano-materials could be washed, dried, and reused, which makes the methods more proficient, cost effective and environmentally friendly.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


2020 ◽  
Vol 16 (3) ◽  
pp. 277-286
Author(s):  
Amal A. El-Masry ◽  
Mohammed E. A. Hammouda ◽  
Dalia R. El-Wasseef ◽  
Saadia M. El-Ashry

Background: The first highly sensitive, rapid and specific green microemulsion liquid chromatographic (MELC) method was established for the simultaneous estimation of fluticasone propionate (FLU) and azelastine HCl (AZL) in the presence of their pharmaceutical dosage form additives (phenylethyl alcohol (PEA) and benzalkonium chloride (BNZ)). Methods: The separation was performed on a C18 column using (o/w) microemulsion as a mobile phase which contains 0.2 M sodium dodecyl sulphate (SDS) as surfactant, 10% butanol as cosurfactant, 1% n-octanol as internal phase and 0.3% triethylamine (TEA) adjusted at pH 6 by 0.02 M phosphoric acid; with UV detection at 220 nm and programmed with flow rate of 1 mL/min. Results: The validation characteristics e.g. linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), accuracy, precision, robustness and specificity were investigated. The proposed method showed linearity over the concentration range of (0.5-25 µg/mL) and (0.1-25 µg/mL) for FLU and AZL, respectively. Besides that, the method was adopted in a short chromatographic run with satisfactory resolution factors of (2.39, 3.78 and 6.74 between PEA/FLU, FLU/AZL and AZL/BNZ), respectively. The performed method was efficiently applied to pharmaceutical nasal spray with (mean recoveries ± SD) (99.80 ± 0.97) and (100.26 ± 0.96) for FLU and AZL, respectively. Conclusion: The suggested method was based on simultaneous determination of FLU and AZL in the presence of PEA and BNZ in pure form, laboratory synthetic mixture and its combined pharmaceutical dosage form using green MELC technique with UV detection. The proposed method appeared to be superior to the reported ones of being more sensitive and specific, as well as the separation was achieved with good performance in a relatively short analysis time (less than 7.5 min). Highly acceptable values of LOD and % RSD make this method superior to be used in quality control laboratories with of HPLC technique.


Sign in / Sign up

Export Citation Format

Share Document