scholarly journals Pulsed Electron Double Resonance in Structural Studies of Spin-Labeled Nucleic Acids

Acta Naturae ◽  
2013 ◽  
Vol 5 (1) ◽  
pp. 9-32 ◽  
Author(s):  
O. S. Fedorova ◽  
Yu. D. Tsvetkov

This review deals with the application of the pulsed electron double resonance (PELDOR) method to studies of spin-labeled DNA and RNA with complicated spatial structures, such as tetramers, aptamers, riboswitches, and three- and four-way junctions. The use of this method for studying DNA damage sites is also described.

2009 ◽  
Vol 74 (11-12) ◽  
pp. 1739-1755 ◽  
Author(s):  
Emil Paleček ◽  
Michael Heyrovský ◽  
Bořivoj Janík ◽  
Dušan Kaláb ◽  
Zdeněk Pechan

History of electrochemistry of proteins and nucleic acids is briefly reviewed. The ability of proteins to catalyze hydrogen evolution at Hg electrodes was discovered almost 80 years ago in J. Heyrovský’s laboratory. This phenomenon was not sufficiently appreciated for several decades. Recently it has been shown that using constant current chronopotentiometric stripping (CPS) with hanging mercury drop, solid amalgam or Hg-film electrodes the CPS peak H is obtained with nanomolar concentrations of peptides and proteins. This peak is derived from the presodium wave but it has some new properties useful in protein research. It is sensitive to changes in protein structures and to protein redox states, representing a new tool for protein analysis applicable in biomedicine. Electroactivity of nucleic acids was discovered about 50 years ago. Electrochemistry of DNA and RNA is now a booming field because of its potential use in sensors for DNA hybridization and DNA damage. Quite recently it has been shown that electrochemistry can be applied also in polysaccharide analysis. A review with 99 references.


2013 ◽  
Vol 91 (5) ◽  
pp. 320-325 ◽  
Author(s):  
Amira F. El-Yazbi ◽  
Glen R. Loppnow

Absorption of UV light by nucleic acids can result in the formation of molecular lesions in DNA and RNA, leading to mutagenesis, carcinogenesis, and cell death. In this work, hairpin oligonucleotide probes, which have previously been shown to be selective for DNA damage, are used. The hypochromic effect, which arises from the formation of the target–hairpin hybrid when there is no damage, is used to measure the amount of UV damage by measuring the amount of single-stranded DNA oligonucleotides. With accumulated UV exposure, the target–hairpin hybrid concentration decreases and the absorbance increases, enabling detection of UV-induced DNA damage. Our results show that the selectivity for DNA damage of the hypochromism probe is comparable with the molecular beacon probes, detecting between one and three lesions in an oligonucleotide. In addition, this probe is more than 10 times cheaper than molecular beacon probes. However, it shows lower sensitivity to DNA damage. This makes its use recommended for high-throughput, qualitative analysis of DNA damage. This introduces a simple, fast, mix-and-read assay for the detection of DNA damage.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4247 ◽  
Author(s):  
Rita Petrucci ◽  
Isabella Chiarotto ◽  
Leonardo Mattiello ◽  
Daniele Passeri ◽  
Marco Rossi ◽  
...  

Natural methylxanthines, caffeine, theophylline and theobromine, are widespread biologically active alkaloids in human nutrition, found mainly in beverages (coffee, tea, cocoa, energy drinks, etc.). Their detection is thus of extreme importance, and many studies are devoted to this topic. During the last decade, graphene oxide (GO) and reduced graphene oxide (RGO) gained popularity as constituents of sensors (chemical, electrochemical and biosensors) for methylxanthines. The main advantages of GO and RGO with respect to graphene are the easiness and cheapness of synthesis, the notable higher solubility in polar solvents (water, among others), and the higher reactivity towards these targets (mainly due to – interactions); one of the main disadvantages is the lower electrical conductivity, especially when using them in electrochemical sensors. Nonetheless, their use in sensors is becoming more and more common, with the obtainment of very good results in terms of selectivity and sensitivity (up to 5.4 × 10−10 mol L−1 and 1.8 × 10−9 mol L−1 for caffeine and theophylline, respectively). Moreover, the ability of GO to protect DNA and RNA from enzymatic digestion renders it one of the best candidates for biosensors based on these nucleic acids. This is an up-to-date review of the use of GO and RGO in sensors.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 628
Author(s):  
Dagmara Baraniak ◽  
Jerzy Boryski

This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Geneviève Bart ◽  
Daniel Fischer ◽  
Anatoliy Samoylenko ◽  
Artem Zhyvolozhnyi ◽  
Pavlo Stehantsev ◽  
...  

Abstract Background The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Results We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin. Small RNA-seq from EV-enriched pooled sweat RNA resulted in 74% of the trimmed reads mapped to the human genome, with 29% corresponding to unannotated regions. Over 70% of the RNA reads mapping to an annotated region were tRNA, while misc. RNA (18,5%), protein coding RNA (5%) and miRNA (1,85%) were much less represented. RNA-seq from individually processed EV-enriched sweat collection generally resulted in fewer percentage of reads mapping to the human genome (7–45%), with 50–60% of those reads mapping to unannotated region of the genome and 30–55% being tRNAs, and lower percentage of reads being rRNA, LincRNA, misc. RNA, and protein coding RNA. Conclusions Our data demonstrates that sweat, as all other body fluids, contains a wealth of nucleic acids, including DNA and RNA of human and microbial origin, opening a possibility to investigate sweat as a source for biomarkers for specific health parameters.


PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009260
Author(s):  
Marta Giannini ◽  
Aleix Bayona-Feliu ◽  
Daisy Sproviero ◽  
Sonia I. Barroso ◽  
Cristina Cereda ◽  
...  

TDP-43 is a DNA and RNA binding protein involved in RNA processing and with structural resemblance to heterogeneous ribonucleoproteins (hnRNPs), whose depletion sensitizes neurons to double strand DNA breaks (DSBs). Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder, in which 97% of patients are familial and sporadic cases associated with TDP-43 proteinopathies and conditions clearing TDP-43 from the nucleus, but we know little about the molecular basis of the disease. After showing with the non-neuronal model of HeLa cells that TDP-43 depletion increases R loops and associated genome instability, we prove that mislocalization of mutated TDP-43 (A382T) in transfected neuronal SH-SY5Y and lymphoblastoid cell lines (LCLs) from an ALS patient cause R-loop accumulation, R loop-dependent increased DSBs and Fanconi Anemia repair centers. These results uncover a new role of TDP-43 in the control of co-transcriptional R loops and the maintenance of genome integrity by preventing harmful R-loop accumulation. Our findings thus link TDP-43 pathology to increased R loops and R loop-mediated DNA damage opening the possibility that R-loop modulation in TDP-43-defective cells might help develop ALS therapies.


2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Reidun Øvstebø ◽  
Peter Kierulf ◽  
Kari Bente Foss Haug

<p>This short review on a rapidly expanding domain in biomarkers focuses on the value of markers derived from either circulating intracellular DNA and RNA (leukocytes) or from free DNA and RNA in plasma or serum. In circulating intracellular DNA biomarkers, importance has been pointed to reside in the ever increasing number of SNPs directly related to disease such as hemochromatosis or associated with genetic make up that leads to different drug-susceptibility. Quantitative gene expression profiling, increasingly using global expression platforms, is gaining momentum in various disease states such as cancer, inflammation, cardiovascular disease and diabetes. Circulating free nucleic acids in plasma or serum gain in importance as biomarkers particularly in cancer and foeto-maternal understanding. The surprising recent findings of circulating free mRNA carries the potential of examining normal and diseased plasma for global gene expression profiling – opening avenues to new biomarkers. When appropriate, this review gives reference to methodological considerations and refers the readers to important literature in the fields</p><p>I denne korte oversiktsartikkelen redegjøres det for et biomarkørfelt som utvikler seg hurtig. Gjennom en blodprøve kan man få kjennskap til forandringer i sirkulerende leucocytter, intracellulære nukleinsyrer (DNA og RNA) og fritt DNA og RNA fra plasma eller serum. Single Nucleotide Polymorphisms (SNPs) i DNA har allerede bekreftet sine muligheter som biomarkører (f.eks. Hemokromatose, Faktor V Leiden, Cytochrom P450 (CYP’er)). Stadig flere SNP’er vinner innpass i klinisk sammenheng. Siden sirkulerende hvite blodlegemer kan sies kontinuerlig å overvåke kroppens organer og vev, og dette avspeiles i disse blodcellers genekspresjon (RNA), knyttes det i dag forventninger til sykdomsspesifikke genekspresjonsprofiler. Både ved visse kreftformer, betennelsestilstander og hjertekar-sykdom viser hvite blodlegemer mer eller mindre tydelig sykdomsspesifikke genekspresjonsprofiler. Denne type sykdomsspesifikke genekspresjonsmarkører vil bli økende viktig fremover. Ved slike markører vil man kunne ha nytte av kvantitativ måling av enkeltmarkører, og også globale genekspresjonsprofiler på mikroarray-plattformer. Sirkulerende fritt DNA og kanskje særlig RNA i plasma åpner for nye sykdomsmarkører i første rekke ved forskjellige kreftformer og ved foeto-maternelle problemstillinger. Oversikten gir også en henvisning til metodologiske referanser i disse feltene.</p>


1989 ◽  
Vol 6 (2-3) ◽  
pp. 171-173 ◽  
Author(s):  
Alessandro Tossi ◽  
Helmut Görner ◽  
Ahmed Aboul-Enein ◽  
Dietrich Schulte-Frohline

Sign in / Sign up

Export Citation Format

Share Document