scholarly journals Growth, photosynthesis, and reactive oxygen system responses of allotriploid Populus cathayana to salt stress

2020 ◽  
Vol 58 (4) ◽  
pp. 944-950
Author(s):  
T. QIU ◽  
Y. WANG ◽  
X.N. GENG ◽  
Y. ZHANG ◽  
Y. LI ◽  
...  
Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 428 ◽  
Author(s):  
Sayed Mohsin ◽  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Khursheda Parvin ◽  
Masayuki Fujita

The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen species production and antioxidant defense systems.


2018 ◽  
Vol 19 (11) ◽  
pp. 3347 ◽  
Author(s):  
Yayun Wang ◽  
Hui Zhao ◽  
Hua Qin ◽  
Zixuan Li ◽  
Hai Liu ◽  
...  

The root plays an important role in the responses of plants to stresses, but the detailed mechanisms of roots in stress responses are still obscure. The GDP-mannose pyrophosphate synthetase (GMPase) OsVTC1-3 is a key factor of ascorbic acid (AsA) synthesis in rice roots. The present study showed that the transcript of OsVTC1-3 was induced by salt stress in roots, but not in leaves. Inhibiting the expression of OsVTC1-3 by RNA interfering (RI) technology significantly impaired the tolerance of rice to salt stress. The roots of OsVTC1-3 RI plants rapidly produced more O2−, and later accumulated amounts of H2O2 under salt stress, indicating the impaired tolerance of OsVTC1-3 RI plants to salt stress due to the decreasing ability of scavenging reactive oxygen species (ROS). Moreover, exogenous AsA restored the salt tolerance of OsVTC1-3 RI plants, indicating that the AsA synthesis in rice roots is an important factor for the response of rice to salt stress. Further studies showed that the salt-induced AsA synthesis was limited in the roots of OsVTC1-3 RI plants. The above results showed that specifically regulating AsA synthesis to scavenge ROS in rice roots was one of important factors in enhancing the tolerance of rice to salt stress.


2021 ◽  
Author(s):  
Miao Liu ◽  
Xiucheng Liu ◽  
Xuhua Du ◽  
Helena Korpelainen ◽  
Ülo Niinemets ◽  
...  

Abstract Synergistic regulation in leaf architecture and photosynthesis is essential for salt tolerance. However, how plant sex and inorganic nitrogen sources alter salt stress-dependent photosynthesis remains unknown. Leaf anatomical characteristics and photosynthesis of Populus cathayana Rehder females and males were investigated under salt stress conditions combined with NO3− and NH4+ supplies to clarify the underlying mechanisms. In salt-stressed females, we observed an increased mesophyll spongy cell density, a reduced chloroplast density, a decreased surface area of chloroplasts adjacent to the intercellular air space (Sc/S) and an increased mesophyll cell area per transverse section width (S/W), consequently causing mesophyll conductance (gm) and photosynthesis inhibition, especially under NH4+ supply. Conversely, males with a greater mesophyll palisade tissue thickness and chloroplast density, but a lower spongy cell density had lower S/W and higher Sc/S, and higher gm and photosynthesis. NH4+-fed females had a lower CO2 conductance through cell wall and stromal conductance perpendicular to the cell wall, but a higher chloroplast conductance from the cell wall (gcyt1) than females supplied with NO3−, while males had a higher chloroplast conductance and lower CO2 conductance through cell wall when supplied with NO3− instead of NH4+ under salt stress. These findings indicate sex-specific strategies in coping with salt stress related to leaf anatomy and gm under both types of N supplies, which may contribute to sex-specific CO2 capture and niche segregation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Na Wu ◽  
Zhen Li ◽  
Ming Tang

AbstractThe sex-specific physical and biochemical responses in dioecious plants to abiotic stresses could result in gender imbalance, and how to ease the current situation by microorganisms is still unclear. Using native soil where poplars were grown, growth parameters, soil physicochemical properties in the rhizosphere soil of different sexes of Populus cathayana exposed to salt stress and exogenous arbuscular mycorrhizal (AM) inoculation were tested. Besides, the sex-specific microbial community structures in the rhizosphere soil of different sexes of Populus cathayana were compared under salt stress. To identify the sex-specific microbial community characteristics related to salinity and AM symbiosis, a combined qPCR and DGGE method was used to monitor microbial community diversity. Seedlings suffered severe pressure by salt stress, reflected in limited growth, biomass, and nutrient element accumulation, especially on females. Exogenous AM inoculation treatment alleviated these negative effects, especially under salt treatment of 75 mM. Compared with salt effect, exogenous AM inoculation treatment showed a greater effect on soil physical–chemical properties of both sexes. Based on DGGE results, salt stress negatively affected fungal richness but positively affected fungal Simpson diversity index, while exogenous AM inoculation treatment showed the opposite effect. Structural equation modeling (SEM) was performed to show the causal relationships between salt and exogenous AM inoculation treatments with biomass accumulation and microbial community: salt and exogenous AM inoculation treatment showed complicated effects on elementary concentrations, soil properties, which resulted in different relationship with biomass accumulation and microbial community. Salt stress had a negative effect on soil properties and microbial community structure in the rhizosphere soil of P. cathayana, whereas exogenous AM inoculation showed positive impacts on most of the soil physical–chemical properties and microbial community status.


2007 ◽  
Vol 27 (14) ◽  
pp. 5214-5224 ◽  
Author(s):  
Jianhua Zhu ◽  
Xinmiao Fu ◽  
Yoon Duck Koo ◽  
Jian-Kang Zhu ◽  
Francis E. Jenney ◽  
...  

ABSTRACT The myristoylated calcium sensor SOS3 and its interacting protein kinase, SOS2, play critical regulatory roles in salt tolerance. Mutations in either of these proteins render Arabidopsis thaliana plants hypersensitive to salt stress. We report here the isolation and characterization of a mutant called enh1-1 that enhances the salt sensitivity of sos3-1 and also causes increased salt sensitivity by itself. ENH1 encodes a chloroplast-localized protein with a PDZ domain at the N-terminal region and a rubredoxin domain in the C-terminal part. Rubredoxins are known to be involved in the reduction of superoxide in some anaerobic bacteria. The enh1-1 mutation causes enhanced accumulation of reactive oxygen species (ROS), particularly under salt stress. ROS also accumulate to higher levels in sos2-1 but not in sos3-1 mutants. The enh1-1 mutation does not enhance sos2-1 phenotypes. Also, enh1-1 and sos2-1 mutants, but not sos3-1 mutants, show increased sensitivity to oxidative stress. These results indicate that ENH1 functions in the detoxification of reactive oxygen species resulting from salt stress by participating in a new salt tolerance pathway that may involve SOS2 but not SOS3.


Sign in / Sign up

Export Citation Format

Share Document