scholarly journals Performance Evaluation of FBMC for Future Communication

Author(s):  
Dr. Shankaraiah ◽  
Tejas K B

The current mobile telecommunication system is grew in a massive way, and in upcoming days requires a good supervision and enactment evaluation in addition to analysis. Filter-Bank-Multi-Carrier (FBMC) stands a method of multicarrier cadence method that is been extremely used for high date rate cellular network system as well as wireless systems. This entails a supple distribution of the obtainable time-frequency possessions, which is problematic over conservative Orthogonal Frequency Division Multiplexing (OFDM). Consequently, alterations of OFDM, such as windowing otherwise filtering, develop essential. The intention of current investigation exertion grounded on mobile expertise remains to upsurge the bandwidth in lieu of altogether users, huge bandwidth, further effectual also easily wieldy also continual unchanging connectivity. The projected paper benevolences, a coalescing outline, and discussion also performance estimation of FBMC also associate it toward OFDM grounded patterns. We develop that several antennas also channel estimate, two of the chief defies allied by FBMC, be able to be proficiently dealt through.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bircan Çalişir ◽  
Ayhan Akbal

Filter bank multicarrier (FBMC) is one of the effective candidates for the fifth generation of wireless communication networks. 5G (5th-generation wireless systems) is accepted as the next major stage of mobile telecommunication technology. The extent of 5G will be expanded mobile broadband services to next-generation automobiles and connected machines. In particular, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) is determined as the future generation 5G air interface by researchers recently. Filter bank multicarrier (FBMC) is admitted as one of the alternative technologies for multicarrier modulation. Compared to orthogonal frequency-division multiplexing (OFDM), FBMC has better spectrum shape and supports mobility. Therefore, efficient hardware implementations have highly interested researchers. Cyclic prefix (CP) and guard band are used for orthogonal frequency-division multiplexing (OFDM) and this causes loss of spectral efficiency, but FBMC applications do not need CP and guard band. Due to the fact that FBMC has offset QAM (OQAM) and band-limited filtering features on each subcarrier, the need for CP and guard band is eliminated. In this paper, novel pipelined hardware architecture of the filter design of FBMC/OQAM modulator has been proposed.


Significant wireless broadband technology used in various cellular standards is Orthogonal Frequency Division Multiplexing (OFDM) which will make use of Multi Carrier Modulated (MCM) systems. Even though OFDM has numerous advantages, it is hard to employ OFDM for complex networks. It is very hard to establish synchronization in mobile environments as it is difficult to predict the Doppler shifts of different users, which results in inter carrier interference (ICI). Further, filters associated with OFDM carrier have comparatively large sidebands which outcomes in Out of Band (OOB) radiations. Insufficient spectral usage is provided by CP-OFDM by using more guard band. So the problems caused by traditional OFDM/CP-OFDM can be answered by employing a new system termed as Filter Bank Multi Carrier (FBMC) System. It is a form of MCM and it can be considered as an advanced cyclic-prefix (CP-OFDM). In OFDM, whole band gets filtered while in FBMC, each sub carrier band is independently filtered. The primary objective of this work is to relate the performance of 5G modulation technique such as FBMC against OFDM and to suggest an ideal waveform for 5G communication in regard to high spectral efficiency, spectral density, BER and less Peak to Average Power Ratio (PAPR).


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1285
Author(s):  
Xianzhen Yang ◽  
Siyuan Yan ◽  
Xiao Li ◽  
Fu Li

Although orthogonal frequency division multiplexing (OFDM) has been standardized for 5G, filter bank multi-carrier (FBMC) and filtered orthogonal frequency division multiplexing (F-OFDM) remain competitive as candidates for future generations of wireless technologies beyond 5G, due to their reduced spectrum leakage and thus enhanced spectrum efficiency. In this article, we developed a unified spectrum expression for OFDM, FBMC, and F-OFDM, which provides comparative insights into those techniques. A representative sideband quantification is included at the end of this article.


2018 ◽  
Vol 246 ◽  
pp. 03002
Author(s):  
Tianfang Dai

Combined with OFDM (Orthogonal Frequency Division Multiplexing), satellite mobile communications will effectively achieve on-demand communication in areas with an ultra-low density of users. With OFDM multiple access optimization, the bandwidth utilization efficiency can be increased by 5 to 10 times. However, satellites are power-constrained systems, so higher PAPR requires greater power backoff, resulting in a decline in satellite transmission capacity. To use OFDM technology in satellites, there are problems such as reduced transmission capacity resulted from high PAPR, complication of lowering PAPR, and difficulty in hardware implementation. In order to deal with the problem of high bit error rate and hardware implementation difficulties in PAPR reduction technique of non-orthogonal frequency division multiplexing, this paper proposes a limiting PAPR reduction technique with OFDM pilot filter banks for satellite mobile communications. Firstly, the applicability of OFDM in satellite mobile communications is analyzed, and the influence of high PAPR on satellite power utilization and the influence of frequency shift sensitivity on inter-satellite communication interference are obtained. Then design the PAPR reduction technique based on the pilot filter bank. By setting the tunable filter bank to the pilot, the sideband power suppression in the OFDM frequency domain is realized, and the PAPR of the OFDM signal is reduced. Finally, the experimental results show that the PAPR performance is improved by 3dB without reducing the bit error rate.


2011 ◽  
Vol 9 ◽  
pp. 139-143
Author(s):  
P. Beinschob ◽  
U. Zölzer

Abstract. With the purpose of supplying the demand of faster and more reliable communication, multiple-input multiple-output (MIMO) systems in conjunction with Orthogonal Frequency Division Multiplexing (OFDM) are subject of extensive research. Successful Decoding requires an accurate channel estimate at the receiver, which is gained either by evaluation of reference symbols which requires designated resources in the transmit signal or decision-directed approaches. The latter offers a convenient way to maximize bandwidth efficiency, but it suffers from error propagation due to the dependency between the decoding of the current data symbol and the calculation of the next channel estimate. In our contribution we consider linear smoothing techniques to mitigate error propagation by the introduction of backward dependencies in the decision-based channel estimation. Designed as a post-processing step, frame repeat requests can be lowered by applying this technique if the data is insensitive to latency. The problem of high memory requirements of FIR smoothing in the context of MIMO-OFDM is addressed with an recursive approach that acquires minimal resources with virtual no performance loss. Channel estimate normalized mean square error and bit error rate (BER) performance evaluations are presented. For reference, a median filtering technique is presented that operates on the MIMO time-frequency grids of channel coefficients to reduce the peak-like outliers produced by wrong decisions due to unsuccessful decoding. Performance in terms of Bit Error Rate is compared to the proposed smoothing techniques.


2021 ◽  
Vol 13 (2) ◽  
pp. 135-142
Author(s):  
Gradiyanto Jason ◽  
Theresia Ghozali ◽  
Kumala Indriati

Saat ini, teknologi pada bidang telekomunikasi berkembang dengan pesat. Pengguna telekomunikasi membutuhkan teknologi komunikasi yang cepat dengan bandwidth yang lebih lebar. Oleh karena itu dikembangkanlah Filter Bank Multi Carrier/Offset Quadrature Amplitude Modulation yang merupakan teknologi kandidat modulasi yang akan digunakan pada 5G. Filter Bank Multi Carrier/Offset Quadrature Amplitude Modulation (FMBC/OQAM) merupakan perkembangan dari Orthogonal Frequency Division Multiplexing (OFDM) yang dimodifikasi dengan menggunakan filter untuk mengurangi noise. OFDM menggunakan teknik multiplexing yang membagi bandwith menjadi beberapa frekuensi sub-carrier. Tetapi OFDM memiliki kelemahan yaitu memerlukan Cyclic Prefix (CP) untuk mengatasi Intersymbol Interference (ISI) serta Intercarrier Interference (ICI). Dengan menggunakan Filter berdasarkan Lembaga Physical layer for dynamic spectrum access and cognitive radio (PHYDYAS)  ,lebar bandwith yang bertambah akibat Cyclic prefix  akan dapat dikurangi Hasil yang dicapai dalam penelitian ini adalah  FBMC berhasil diterapkan  dan data yang dikirim sama dengan data yang diterima.


2015 ◽  
Vol 18 (3) ◽  
pp. 218-224
Author(s):  
Khoa Le Dang ◽  
Phuong Huu Nguyen ◽  
Hiroshi Ochi

Optical wireless systems have attracted attention, because they allow high-speed transmission without electromagnetic interference. Orthogonal frequency division multiplexing (OFDM) can send multiple high speed signals by using orthogonal carrier frequencies. Recently, studies have been focused on the optimal OFDM technique for optical wireless systems. When using OFDM, one important issue is determining the cyclic prefix and removing it from the frame before the receiver detects signals. In this paper, we propose a new auto synchronization technique of unipolar MPAM signals. It can remove the cyclic prefix in any sample of the OFDM frame using unipolar MPAM. It is a candidate for wideband systems and using 2-PAM or 4-PAM. The results of mathematical analysis and simulations show that it can be used for optical wireless systems.


Sign in / Sign up

Export Citation Format

Share Document