scholarly journals PEMBUATAN METIL ESTER DARI MINYAK KEMIRI SUNAN DENGAN KEBERADAAN CO-SOLVENT ASETON DAN KATALIS HETEROGEN NATRIUM SILIKAT TERKALSINASI

2016 ◽  
Vol 5 (3) ◽  
pp. 17-23
Author(s):  
Muhammad Yusuf Ritonga ◽  
Mangunsong Ruben Reinhard Giovani

Methyl ester can be produced from vegetable oil or animal oil through transesterification process. The problem that often arises in the transesterification process is the long reaction time because of oil and alcohol are not mutually dissolve and also separation and purification catalysts are difficult to homogeneous catalysts. The addition of co-solvent may assist the mixing of the reactants and the use of heterogeneous catalysts can overcome the problem of homogeneous catalysts. Sunan candlenut oil contained high free fatty acid (FFA) content of 9.1517% so it needs to be pretreated by esterification so that the raw material has a 1.0538% FFA.  The product  from  this stage  was subjected  to produce methylester and glycerol. The produced methyl ester on the upper layer was separated from the glycerol and then washed. Effect of various process variables were investigated. The propertiesof methyl ester like methyl ester content, density, viscosity, iodine value, acid value, the content of methyl ester,  triglycride(TG), diglyceride(DG) and monoglyceride (MG) was evaluated and was found to compare well with Indonesian Standard (SNI) and European strandart (EN). On this work the best yield condition , was obtain  by using amount of catalyst 3% at 40oC, for reaction time 30 minute in presence of 20% co-solvent of the 96,1493 yield methyl ester. The result of this work showed that sunan candlenut oli is very suitable as the feedstock of methyl ester.

2013 ◽  
Vol 2 (4) ◽  
pp. 25-30
Author(s):  
Ahmad Rozi Tanjung ◽  
Ida Ayuningrum ◽  
Renita Manurung

Palm Fatty Acid Distillate (PFAD) can be used as raw material for synthesis polyester. The aim of this research is to synthesis of polyester and to determine the effect of reaction time on  polymerization methyl ester PFAD. The esterification stage was done at temperature 70oC, reactiontime 120 minute, reactant ratio 1:8 (PFAD:methanol), concentration of catalyst (H2SO4) 1% (w/w) PFAD;polymerization stage was done at temperature 126-132°C, concentration ofcatalyst (BF3-diethyl etherate) 9.2 % (w/w), variation of polymerization reaction time3, 4, and 5 hours; and polyesterification stage was done at temperature 175-200 oC,reactant ratios (w/w) 1:1 (polymerized ME : ethylene glycol), reaction time 4 hours and all ofstage was stirred at 150 rpm. The results showed, in the esterification stage wasobtained methyl ester with iodine value 77.29 g I2/100 g, viscosity 6.90 cP,density 859.91 kg/m3 and analysis byusing GC-MS showed that the purity of methyl ester was 82.23% andmolecular weight 267.97 g/mol. Decreasing in iodine value from 77.294 I2 g/100 g to 63.45-61.14 gI2/100 g indicated that the polymerization process had takenplace. In polyesterification stage wasobtained gel polyester, viscous, dark brown colored solid at room temperature with acid value from13.13 to 21.65 mg KOH/g, viscosity from 14.3 to 19.1 P, and molecular weight 995.03 to 1,522.07g/mol which is more suitable for application of modified polyester. Analysis by using GC showed that the purity of polyester is equal to 65.49%.


2018 ◽  
Vol 34 (2) ◽  
pp. 267-297 ◽  
Author(s):  
Farrukh Jamil ◽  
Lamya Al-Haj ◽  
Ala’a H. Al-Muhtaseb ◽  
Mohab A. Al-Hinai ◽  
Mahad Baawain ◽  
...  

AbstractDue to increasing concerns about global warming and dwindling oil supplies, the world’s attention is turning to green processes that use sustainable and environmentally friendly feedstock to produce renewable energy such as biofuels. Among them, biodiesel, which is made from nontoxic, biodegradable, renewable sources such as refined and used vegetable oils and animal fats, is a renewable substitute fuel for petroleum diesel fuel. Biodiesel is produced by transesterification in which oil or fat is reacted with short chain alcohol in the presence of a catalyst. The process of transesterification is affected by the mode of reaction, molar ratio of alcohol to oil, type of alcohol, nature and amount of catalysts, reaction time, and temperature. Various studies have been carried out using different oils as the raw material; different alcohols (methanol, ethanol, butanol); different catalysts; notably homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and supercritical fluids; or, in some cases, enzymes such as lipases. This article focuses on the application of heterogeneous catalysts for biodiesel production because of their environmental and economic advantages. This review contains a detailed discussion on the advantages and feasibility of catalysts for biodiesel production, which are both environmentally and economically viable as compared to conventional homogeneous catalysts. The classification of catalysts into different categories based on a catalyst’s activity, feasibility, and lifetime is also briefly discussed. Furthermore, recommendations have been made for the most suitable catalyst (bifunctional catalyst) for low-cost oils to valuable biodiesel and the challenges faced by the biodiesel industry with some possible solutions.


2012 ◽  
Vol 209-211 ◽  
pp. 1774-1777
Author(s):  
Su Xi Wu ◽  
Shuai Hang Yan ◽  
Hui Cai

with the shortage of the raw material oil for producing bio-diesel in China, the oil, recovered from the used bleaching clay which often be discarded by vegetable oil factory, was used to prepare bio-diesel in this trial. Two-step catalyzed process was adopted to produce biodiesel from the oil. The effect of methanol-to-oil molar ratio, alkaline catalyst quantity, reaction temperature and reaction time on the preesterification and transesterification reaction was investigated through orthogonal experiments. Thus the optimal reaction condition came out. Firstly, the optimal pre-esterification condition, under which the end acid value of the product was minimum (i.e. 1.88 mgKOH/g),was to react for 40 h at 60°C,with a methanol-to-oil molar ratio of 12:1, and by adding alkali catalyst 4% based on the oil weight. Secondly,the optimal transesterification condition, under which the maximum yield of bio-diesel can reach up to 98.2%, was to react for 2.5 h at 60°C,with the methanol-to-oil molar ratio of 7:1, and by adding catalyst 1.25% based on the oil weight.


2014 ◽  
Vol 25 (2) ◽  
pp. 39-47 ◽  
Author(s):  
Andrew C. Eloka-Eboka ◽  
Ogbene Gillian Igbum ◽  
Freddie L. Inambao

Optimization of the production process in biodiesel production holds huge prospects. A reduced cost option is the optimization of process variables that affect yields and purity of biodiesel, which was achieved in this study. Optimized production and direct effects of process variables on the production and quality of methyl ester biodiesel fuels from the non-edible seed oils of sandbox seed was carried out. Catalyst nature and concentration, alcohol to triglyceride molar ratio, mixing speed, reaction time and temperature were taken into consideration as variables to their individual response on the yields, viscosity and specific gravity of the methyl esters produced. These are specific indispensable properties of biodiesel for use in compression ignition engines. Optimized concentrations were 0.3 to 1.5% w/v and two mole ratios of 3:1 and 6:1. Time of reaction was varied (5mins to 30mins) with temperatures (38oC and 55oC). Also, the effect of methanol in the range of 4:1and 6:1 (molar ratio) was investigated, keeping catalyst type, reaction time and temperatures constant. The effects of KOH and NaOH on the transesterification were investigated with concentration kept constant at 1%. The general response in this study was that at optimized rate of agitation (800rpm), optimized reaction time was as low as 5minutes, 1% catalyst concentration of NaOH was the optimal concentration, and 55oC was the optimal temperature with attendant high yields. However, there are variations with the nature of feedstock as the work further exposed. These high points are particularly of interest to guide against process backdrop.


Author(s):  
O. A. Aworanti ◽  
A. O. Ajani ◽  
S. E. Agarry ◽  
K. A. Babatunde ◽  
O. D. Akinwunmi

In this research work, the optimum process variables (catalyst, methanol to oil ratio and reaction time) for transesterification of palm oil sludge (POS) to biodiesel were studied. The transesterification process was carried by mixture of palm oil sludge, methanol and catalyst with the help of magnetic stirrer at 300 rpm and at temperature of 60ºC. The catalyst used for the process was potassium hydroxide (KOH). One-Factor-at-A-Time was used to select the possible optimum levels of process variable that gives high biodiesel yield. The study was evaluated by five levels  of methanol-to-oil ratio (1:1 – 12:1), catalyst (0.1- 2%) and reaction time (30 – 150 min).The optimum process variables for transesterification of palm oil sludge (POS) to achieved maximum biodiesel yield  were found to be methanol to oil molar ratio of 12:1, catalyst loading of 1.5wt% and reaction time of 30 min. At this optimum conditions the maximum biodiesel yield was 61.2%. The biodiesel produced from transesterification of palm oil sludge was characterized in order to determine the properties of the product. The density of POS is 857.0 kg/m3, kinematic viscosity of 5.38 mm2/s, flash point of 180°C, pour point of -5°C, and Acid value of 0.17 mgKOH/g. The biodiesel produced from transesterification of palm oil sludge meets the EN 14214 and ASTM 6751 standard. Thus, this study will be helpful to determine an efficient and economical procedure for biodiesel production from non-edible raw materials with high free fatty acid.


2020 ◽  
Vol 7 (1) ◽  
pp. 191592
Author(s):  
Shehu-Ibrahim Akinfalabi ◽  
Umer Rashid ◽  
Imededdine Arbi Nehdi ◽  
Thomas Shean Yaw Choong ◽  
Hassen Mohamed Sbihi ◽  
...  

The optimum conditions to produce palm fatty acid distillate (PFAD)-derived-methyl esters via esterification have been demonstrated with the aid of the response surface methodology (RSM) with central composite rotatable design in the presence of heterogeneous acid catalyst. The effect of four reaction variables, reaction time (30–110 min), reaction temperature (30–70°C), catalyst concentration (1–3 wt.%) and methanol : PFAD molar ratio (3 : 1–11 : 1), were investigated. The reaction time had the most influence on the yield response, while the interaction between the reaction time and the catalyst concentration, with an F -value of 95.61, contributed the most to the esterification reaction. The model had an R 2 -value of 0.9855, suggesting a fit model, which gave a maximum yield of 95%. The fuel properties of produced PFAD methyl ester were appraised based on the acid value, iodine value, cloud and pour points, flash point, kinematic viscosity, density, ash and water contents and were compared with biodiesel EN 14214 and ASTM D-6751 standard limits. The PFAD methyl ester was further blended with petro-diesel from B0, B3, B5, B10, B20 and B100, on a volumetric basis. The blends were characterized by TGA, DTG and FTIR. With an acid value of 0.42 (mg KOH g −1 ), iodine value of 63 (g.I 2 /100 g), kinematic viscosity of 4.31 (mm 2 s −1 ), the PFAD methyl ester has shown good fuel potential, as all of its fuel properties were within the permissible international standards for biodiesel.


2015 ◽  
Vol 4 (2) ◽  
pp. 20-26
Author(s):  
M. Yusuf Ritonga ◽  
Anda Putra

Biodiesel is a low-emission diesel fuel substitute made from renewable resources and waste oil. The objective of the study was to study of CaO catalysts in biodiesel production from RBDPO with clam shell catalyst through calcinations of CaCO3 with temperature of 900oC and 3.5 hours will be obtained CaO content of 68,35%. Effect of various process variables such as type of catalyst, reaction time, amount of catalyst and molar ratio of Methanol / oil were investigated. The biodiesel properties like methyl ester content, density, viscosity, and flash point was compared with Indonesian Standard (SNI). Under the best condition, the maximum yield, purity, density, viscosity and flash point of biodiesel RBDPO respectively for 84,0179%, 97,98%, 875,47 kg/m3, 4,99 cSt and 122oC was obtained by using 12:1 molar ratio of methanol to RBDPO oil at 60oC, for a reaction time of 2 hours in the presence 5 wt% of CaO catalyst. The results of this research showed that heterogeneous catalysts CaO derived from clam shell suitable to be used as catalysts in biodiesel production.


2015 ◽  
Vol 26 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Chia-Wei Lin ◽  
Shuo-Wen Tsai

An environmentally friendly biorefinery process for producing biodiesel from chicken wastes was performed for this study. Low acid value (0.13±0.01 mg KOH/g) chicken oil was obtained by preparing chicken wastes with moderate heating and filtration processes that minimized damage to the lipids and thus facilitated subsequent reactions. Methanol-lipids in a molar ratio of 6:1 and a methanol-ethanol-lipids mixture in a molar ratio of 3:3:1 were both reacted with 1% KOH catalyst for transesterfication. Furthermore, ethanol-lipids in a molar ration of 6:1 were analogously transesterified with 1% sodium ethoxide. The amounts of biodiesel were 771.54 mg/mL±15.28, 722.98 mg/mL±37.38, and 714.86 mg/ mL±29.99 from methanol, eth-anol, and a mixture of methanol/ethanol (3:3), respectively, after transesterification. The total amount of ethyl ester was comparable with the total amount of methyl ester. In addition, ethanol is a renewable resource and a biorefinery concept can be contributed for biodiesel production. Further-more, transesterification of chicken oil with a mixture of methanol/ethanol (3:3) only needed a relatively short reaction time of an hour. Densities, viscosities, sulphur contents, acid values, and flash points of all esters were within the specifications of CNS 15072 and EN 14214. The transesterification system for chicken oil in ethanol and mixed methanol/ethanol (3:3) demonstrated in this study is a potential candidate for biodiesel production.


2015 ◽  
Vol 4 (1) ◽  
pp. 35-41 ◽  
Author(s):  
Wendi ◽  
Valentinoh Cuaca ◽  
Taslim

Biodiesel is an alternative fuel for diesel engines consisting of the alkyl monoesters from vegetable oils or animal fats. Beef tallow waste is the non-edible raw material with low cost production and the availability is huge in the cattle production. The objective of the study was to utilize beef tallow waste for biodiesel production using solid oxide catalyst which derived from the industrial eggshells. The materials calcined with temperature 900oC and time 2 hours, transformed calcium species in the shells into active CaO catalysts.The oil contained high free fatty acid (FFA) content of 1.86%. The FFA content of the oil was reduced by acid-catalyzed esterification. The product from this stage was subjected to produce biodiesel. Transesterification process reacts oil and methanol to produce methyl ester and glycerol. The produced methyl ester on the upper layer was separated from the glycerol and then washed. Effect of various process variables such as amount of catalyst and temperature were investigated. The biodiesel properties like methyl ester content, density, viscosity, and flash point was evaluated and was found to compare well with Indonesian Standard (SNI). Under the best condition, the maximum yield of 82.43% beef tallow methyl ester was obtained by using 9:1 molar ratio of methanol to beef tallow oil at 55oC, for a reaction time 1.5 hours in the presence 3 wt% of CaO catalyst. The results of this work showed that the use of beef tallow is very suitable as low cost feedstock for biodiesel production.


2013 ◽  
Vol 2 (3) ◽  
pp. 1-7
Author(s):  
Muhammad Tarmidzi ◽  
Andre Y. Putra ◽  
Renita Manurung ◽  
Tjahjono Herawan

The development of biodiesel which is derived  from Crude Palm Oil (CPO) shows a risingtrend  forpetroleum-based energy reserves are running low.Oil palm is the largestplantation commodity in Indonesia, so, it has high potential as raw material of biodiesel.Transesterification is a reaction of producingbiodiesel (methyl ester). Nevertheless, CPO is easy to be degraded byhydrolysis, so, it couldincrease the amount of Free Fatty Acid (FFA) content which hampers transesterification process. As a consequence, there is formation of soaps as side product. Tomaximize the production of biodiesel which is derived frompalm oil that contains of large amount of  FFA (low grade CPO)  one of the waysis by applying catalyst through doped-process. This research is held togive  information about the effect of Li+ion concentration (inLiNO3 form) which is doped to calcium oxide (CaO) to palm oil transesterification with the large amount ofFFA to produce methyl ester, attemperature of 120oC,the ratio of methanol:CPO = 12:1 (mol/mol), catalyst amount 2,5% (w/w) CPO, for 3,5 hours and usespressured reactor. The variable of research is Liconcentration that isdoped to CaO with concentration:  0%, 1% and 4% (w/w) CaO. The parameter test is methyl ester content that is derived from the result of transesterification with GasChromatography (GC) analysis. The research shows that Li+ion that is doped to CaO catalyst could increase the reaction of methyl ester production which is derived from low grade CPO with FFA>3,5 %, in which the finest of Liconcentration that is doped to CaO is 1%, with result of 90,88% methyl ester.


Sign in / Sign up

Export Citation Format

Share Document