scholarly journals Chemical and microbiological characteristic of silomaize ensiled with some lactic acid bacteria strains

2018 ◽  
Vol 6 (1-2) ◽  
pp. 50-56
Author(s):  
Judit Péter Szűcs ◽  
Ágnes Süli ◽  
Tímea Süli-Zakar ◽  
Elizabet Berecz ◽  
Máté Pék

The object of the trial was to study the effect of some lactic acid bacteria strains on the chemical composition, energy- and metabolisable protein (MP) content, microbiological characteristics and in-silo weight and dry matter losses of whole crop maize silages. The whole plant maize raw material was 32% DM, in soft cheddar stage of grain ripeness. It was ensiled in 4.2 litre capacity glass micro-size silos in 5 replicates /each treatment and stored on constant 25 °C room temperature on day 95. The average packing desity was 211kg DM/m3 The applied treatments: 1. Untreated control, 2. Enterococcus faecium 100.000 CFU/g FM, 3. Lactobacillus plantarum 50.000 CFU/g + Enterococcus faecium 50.000 CFU/g, 4. Lactococcus lactis 100.000 CFU/g, Lactobacillus plantarum 50.000 CFU + Lactococcus lactis 50.000 CFU/g, 6. Lactobacillus plantarum 100.000 CFU The main experiences are the following: Chemical composition of whole crop maize silages treated by lactic acid bacteria strains are significantly differed from the control in some cases on P 5% level but the nutritive value (energy and MP content) of silages did not change significantly compare to the control untreated silage. Number of yeast and mould CFU of control silage was the highest (4.5 x 104 CFU/g FM) among all kind of treated ones, which was significant on P 1% level. Weight loss and DM loss were lower in all of the lactic acid bacteria treated silages in general than it was measured in the control silage. Least weight loss and one-third of DM loss was detected in Lactobacillus plantarum 000 CFU/g treated silage among all kind of silages.  

2019 ◽  
Vol 7 (1-2) ◽  
pp. 127-132
Author(s):  
Judit Peter Szucs ◽  
Agnes Suli ◽  
Timea Suli Zakar ◽  
Elizabet Berecz ◽  
Mate Pek

The object of the trial was to study the effect of some lactic acid bacteria strains on the fermentation and aerobic stability of whole plant maize silages.The whole plant maize raw material was 32% DM, in soft cheddar stage of grain ripeness. It was ensiled in 4.2 litre capacity glass micro-size silos in 5 replicates /each treatment and stored on constant air conditioned room temperature (22 oC) during 95 days. The average packing density of raw material was 211 kg DM/m3.The applied treatments: 1. Untreated control maize, 2. Enterococcus faecium 100,000 CFU/g fresh maize (FM), 3. Lactobacillus plantarum 50,000 CFU/g FM + Enterococcus faecium 50,000 CFU/g FM, 4. Lactococcus lactis 100,000 CFU/g FM, 5. Lactobacillus plantarum 50,000 CFU/g FM + Lactococcus lactis 50,000 CFU/g FM, 6. Lactobacillus plantarum 100,000 CFU/g FM.Aerobic stability study:  Applied Honig (1990 system).The main experiences are the following: Applied lactic acid bacteria strains improved the quality of fermentation of maize in general compare to untreated control one.Lactic acid bacteria strains significantly stimulated lactic acid production and decreased propionic and butyric acid production. The origin of ammonia decreased also under influence of lactic acid bacteria strains in unaerobic conditions.Enterococcus faecium and.Lactococcus lactis are not able to protect the maize silages against the aerobic deterioration with the applied dosage.  Lactobacillus plantarum itself produced the most favourable fermentation characteristics and protected the aerobic stability of silage the most effectively (during 4 day) compare to all other treated maize silages.


Author(s):  
P. O'Kiely

Silage fermentation is progressively restricted as the extent of pre-wilting increases (O'Kiely et_al., 1988). The magnitude of the improvement in silage nutritive value in response to a lactic acid bacteria inoculant could be related to the extent of the fermentation in the untreated silage. The objective of this experiment was to determine if the response in silage nutritive value to a Lactobacillus plantarum inoculant was similar at different levels of dry matter (DM) concentration.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Manel Ziadi ◽  
Taroub Bouzaiene ◽  
Sana M’Hir ◽  
Kaouther Zaafouri ◽  
Ferid Mokhtar ◽  
...  

Exopolysaccharides (EPS) produced by three Lactic Acid Bacteria strains,Lactococcus lactisSLT10,Lactobacillus plantarumC7, andLeuconostoc mesenteroidesB3, were isolated using two methods: ethanol precipitation (EPS-ETOH) and ultrafiltration (EPS-UF) through a 10 KDa cut-off membrane. EPS recovery by ultrafiltration was higher than ethanol precipitation forLactococcus lactisSLT10 andLactobacillus plantarumC7. However, it was similar with both methods forLeuconostoc mesenteroidesB3. The monomer composition of the EPS fractions revealed differences in structures and molar ratios between the two studied methods. EPS isolated fromLactococcus lactisSLT10 are composed of glucose and mannose for EPS-ETOH against glucose, mannose, and rhamnose for EPS-UF. EPS extracted fromLactobacillus plantarumC7 andLeuconostoc mesenteroidesB3 showed similar composition (glucose and mannose) but different molar ratios. The molecular weights of the different EPS fractions ranged from 11.6±1.83 to 62.4±2.94 kDa. Molecular weights of EPS-ETOH fractions were higher than those of EPS-UF fractions. Fourier transform infrared (FTIR) analysis revealed a similarity in the distribution of the functional groups (O-H, C-H, C=O, -COO, and C-O-C) between the EPS isolated from the three strains.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335
Author(s):  
Ana Paula Maia dos Santos ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal de Araújo ◽  
Juliana Silva de Oliveira ◽  
Anderson de Moura Zanine ◽  
...  

The current study aimed to evaluate the application effects of the preactivated Lactobacillus buchneri and urea on the fermentative characteristics, chemical composition and aerobic stability in corn silages. The design was completely randomized, in a 6 × 5 factorial arrangement, with six types of additive and five opening times. The treatments consisted of corn silage; corn silage with freeze-dried inoculant; corn silage with freeze-dried inoculant +1.0% urea; corn silage with activated inoculant; corn silage with activated inoculant +1.0% urea, and corn silage with 1.0% urea. Populations of lactic acid bacteria stabilized at the 70th day, with average values of 8.91 and 9.15 log cfu/g for corn silage with freeze-dried inoculant +1.0% urea and corn silage with freeze-dried inoculant, respectively. In contrast, the silages without additives showed significantly lower values of 7.52 log cfu/g forage at the 70th day. The silages with urea (isolated or associated with the inoculant) increased the total nitrogen content. The maximum temperature values were highest in the corn silages without additives, indicating that these silages were more prone to deterioration. The use of Lactobacillus buchneri activated proved to be more efficient in improving the fermentative profile of corn silages than the freeze-dried inoculant. The use of urea as an additive reduced the losses and improved the nutritional value and aerobic stability of corn silages. Additionally, the combination of Lactobacillus buchneri activated and urea may be used as a technique to improve the fermentative profile, chemical composition and aerobic stability of corn silages.


2011 ◽  
Vol 63 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Natasa Jokovic ◽  
Maja Vukasinovic ◽  
Katarina Veljovic ◽  
Maja Tolinacki ◽  
L. Topisirovic

Two hundred thirteen non-starter lactic acid bacteria isolated from Radan cheese during ripening were identified with both a classical biochemical test and rep-PCR with (GTG)5 primer. For most isolates, which belong to the Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Enterococcus faecium, a phenotypic identification was in good agreement with rep-PCR identification. Lactococeus lactis subsp. lactis, Enterococcus faecium and subspecies from the Lenconostoc mesenteroides group were the dominant population of lactic acid bacteria in cheese until 10 days of ripening and only one Streptococcus thermophilus strain was isolated from the 5-day-old cheese sample. As ripening progressed, Lactobacillus plantarum became the predominant species together with the group of heterofermentative species of lactobacilli that could not be precisely identified with rep-PCR.


2003 ◽  
Author(s):  
Zwi G. Weinberg ◽  
Richard E. Muck ◽  
Nathan Gollop ◽  
Gilad Ashbell ◽  
Paul J. Weimer ◽  
...  

The overall objective of the whole research was to elucidate the mechanisms by which LAB silage inoculants enhance ruminant performance. The results generated will permit the development of better silage inoculants that maximize both silage preservation and animal performance. For this one-year BARD feasibility study, the objectives were to: 1. determine whether lactic acid bacteria (LAB) used in inoculants for silage can survive in rumen fluid (RF) 2.select the inoculants that survived best, and 3. test whether LAB silage inoculants produce bacteriocins-like substances. The most promising strains will be used in the next steps of the research. Silage inoculants containing LAB are used in order to improve forage preservation efficiency. In addition, silage inoculants enhance animal performance in many cases. This includes improvements in feed intake, liveweight gain and milk production in 25-40% of studies reviewed. The cause for the improvement in animal performance is not clear but appears to be other than direct effect of LAB inoculants on silage fermentation. Results from various studies suggest a possible probiotic effect. Our hypothesis is that specific LAB strains interact with rumen microorganisms which results in enhanced rumen functionality and animal performance. The first step of the research is to determine whether LAB of silage inoculants survive in RF. Silage inoculants (12 in the U.S. and 10 in Israel) were added to clarified and strained RF. Inoculation rate was 10 ⁶ (clarified RF), 10⁷ (strained RF) (in the U.S.) and 10⁷, 10⁸ CFU ml⁻¹ in Israel (strained RF). The inoculated RF was incubated for 72 and 96 h at 39°C, with and without 5 g 1⁻¹ glucose. Changes in pH, LAB numbers and fermentation products were monitored throughout the incubation period. The results indicated that LAB silage inoculants can survive in RF. The inoculants with the highest counts after 72 h incubation in rumen fluid were Lactobacillus plantarum MTD1 and a L. plantarum/P. cerevisiae mixture (USA) and Enterococcus faecium strains and Lactobacillus buchneri (Israel). Incubation of rumen fluid with silage LAB inoculants resulted in higher pH values in most cases as compared with that of un-inoculated controls. The magnitude of the effect varied among inoculants and typically was enhanced with the inoculants that survived best. This might suggest the mode of action of LAB silage inoculants in the rumen as higher pH enhances fibrolytic microorganisms in the rumen. Volatile fatty acid (VFA) concentrations in the inoculated RF tended to be lower than in the control RF after incubation. However, L. plalltarull1 MTDI resulted in the highest concentrations of VFA in the RF relative to other inoculants. The implication of this result is not as yet clear. In previous research by others, feeding silages which were inoculated with this strain consistently enhanced animal performance. These finding were recently published in Weinberg et.al.. (2003), J. of Applied Microbiology 94:1066-1071 and in Weinberg et al.. (2003), Applied Biochemistry and Biotechnology (accepted). In addition, some strains in our studies have shown bacteriocins like activity. These included Pediococcus pentosaceus, Enterococcus faecium and Lactobacillus plantarum Mill 1. These results will enable us to continue the research with the LAB strains that survived best in the rumen fluid and have the highest potential to affect the rumen environment.


Author(s):  
Natalí Garcia Marnotes ◽  
Arona Figueroa Pires ◽  
Olga Díaz ◽  
Angel Cobos ◽  
Carlos Dias Pereira

The objective of this work was the use of goat and sheep liquid whey concentrates (LWCs) produced by ultrafiltration (UF) for the manufacture of frozen yoghurts with or without different concentrations of inulin. In a first step, natural yoghurts using only goat and sheep LWCs as raw material were obtained. One day after production, these yoghurts were used to produce frozen yoghurts with different concentrations of added inulin. The physicochemical charateristics of ewe´s and goat´s yoghurts were significantly different regarding dry matter, protein, fat and minerals. Ewe´s yoghurts were solids while goat´s yoghurts behaved as a viscous liquid. Frozen yoghurts with different levels of inulin addition also presented significant differences concerning physicochemical and microbiological characteristics. Overrun was similar for all formulations except for the one produced with ewe’s LWC containing 5.0% inulin, which presented a significantly higher value. Higher meltdown rates in goat’s whey frozen yoghurts were observed. The survival rates of lactic acid bacteria were lower than data reported for similar products. Concerning sensory acceptance, both products showed encouraging results. It can be considered that the production of frozen yoghurts by using LWCs as main ingredient can be an interesting option to broaden the product’s portfolio of small/medium scale dairy producers.


1992 ◽  
Vol 55 (6) ◽  
pp. 444-448 ◽  
Author(s):  
THOMAS J. MONTVILLE ◽  
ANN M. ROGERS ◽  
AMECHI OKEREKE

The sensitivities of proteolytic and nonproteolytic Clostridium botulinum strains to nisin and other bacteriocins were investigated. Although there were statistically different nisin sensitivities among vegetative cells from 18 C. botulinum strains, these differences were not biotype-associated. When inoculated into tryptose peptone yeast extract glucose broth containing nisin at various levels, spores from strain 56 A were not inhibited at all by 100 IU/ml of nisin. About 2,500 IU/ml was required to inhibit growth for 30 d. In contrast, only 10 IU/ml was required to inhibit strain 169 for 30 d. Both strains were completely inhibited at the 10,000 IU/ml limit allowed in processed cheeses. Spores from strains having limited (strain 56A), moderate (strain 25675), or extreme (strain 169) nisin sensitivity were examined for bacteriocin-mediated inhibition by Lactococcus lactis 11454, Pediococcus pentosaceus 43200, P. pentosaceus 43201, and Lactobacillus plantarum BN using the spot-on-the-lawn method. While the differences in nisin sensitivity were confirmed, there was no statistically significant difference in their sensitivities to the bacteriocins produced by other lactic acid bacteria.


1999 ◽  
Vol 4 (2) ◽  
pp. 61
Author(s):  
N. Guizani ◽  
K. Al-Ramadani

Fifteen samples of Laban made at home in three Omani regions were subjected to physical-chemical and microbiological analysis. Laban had an average titratable acidity, pH, fat, protein and total solids of 1.12%, 3.98, 1.I2%, 2. 11% and 6.29%, respectively. The microbial flora of traditional Omani laban was found to be predominantly mesophilic lactococci. and homofemenentative lactobacili. The mean Lactococci and lactobacilli counts were 1.3 x 10 8 and 2.4 x 10 6/ml respectively. The main microbial types involved in the manufacture of Omani laban were Lactoeoccus lactis ssp lactis. Lacrococcus locus ssp locus biov. Diacetylactis, Lactococcus lactis ssp, Cremoris. and Lactobacillus plantarum. Leuconostoc species were present in low proportion compared to other lactic acid bacteria. All Laban samples contained high yeast numbers and were highly contaminated with coliforms, and fecal coliforms.


Sign in / Sign up

Export Citation Format

Share Document