scholarly journals Effect of Hydrogen, Hydride Orientation and Temperature on Low-Cycle Fatigue Resistance of Zr-1%Nb Fuel Rod Claddings

2021 ◽  
pp. 53-59
Author(s):  
G. Riedkina ◽  
V. Grytsyna ◽  
S. Klymenko ◽  
Т. Chernyayeva

Low-cycle fatigue testing was conducted on annular samples with an outer diameter of 9.13 mm, a wall thickness of 0.68 mm and a width of 2.7 mm, namely: non-hydrogenated samples (cut out of standard Zr‑1%Nb cladding tubes); hydrogenated samples with a hydrogen concentration of 50 ... 400 ppm; samples cut out from hydrogenated dummy claddings after hydride reorientation tests performed according to various test modes. The tests were conducted at the temperatures of 25, 180, 350, 400 and 450 °С. The results obtained demonstrate that with increasing the hydrogen content in Zr-1%Nb alloy claddings the fatigue life increases.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


2018 ◽  
Vol 165 ◽  
pp. 06002
Author(s):  
Golta Khatibi ◽  
Ali Mazloum-Nejadari ◽  
Martin Lederer ◽  
Mitra Delshadmanesh ◽  
Bernhard Czerny

In this study, the influence of microstructure on the cyclic behaviour and lifetime of Cu and Au wires with diameters of 25μm in the low and high cycle fatigue regimes was investigated. Low cycle fatigue (LCF) tests were conducted with a load ratio of 0.1 and a strain rate of ~2e-4. An ultrasonic resonance fatigue testing system working at 20 kHz was used to obtain lifetime curves under symmetrical loading conditions up to very high cycle regime (VHCF). In order to obtain a total fatigue life model covering the low to high cycle regime of the thin wires by considering the effects of mean stress, a four parameter lifetime model is proposed. The effect of testing frequency on high cycle fatigue data of Cu is discussed based on analysis of strain rate dependency of the tensile properties with the help of the material model proposed by Johnson and Cook.


1974 ◽  
Vol 96 (3) ◽  
pp. 171-176 ◽  
Author(s):  
J. D. Heald ◽  
E. Kiss

This paper presents the results of low-cycle fatigue testing and analysis of 26 piping components and butt-welded sections. The test specimens were fabricated from Type-304 stainless steel and carbon steel, materials which are typically used in the primary piping of light water nuclear reactors. Components included 6-in. elbows, tees, and girth butt-welded straight sections. Fatigue testing consisted of subjecting the specimens to deflection-controlled cyclic bending with the objective of simulating system thermal expansion type loading. Tests were conducted at room temperature and 550 deg F, with specimens at room temperature subjected to 1050 psi constant internal hydraulic pressure in addition to cyclic bending. In two tests at room temperature, however, stainless steel elbows were subjected to combined simultaneous cyclic internal pressure and cyclic bending. Predictions of the fatigue life of each of the specimens tested have been made according to the procedures specified in NB-3650 of Section III[1] in order to assess the code design margin. For the purpose of the assessment, predicted fatigue life is compared to actual fatigue life which is defined as the number of fatigue cycles producing complete through-wall crack growth (leakage). Results of this assessment show that the present code fatigue rules are adequately conservative.


Author(s):  
Tommi Seppänen ◽  
Jouni Alhainen ◽  
Esko Arilahti ◽  
Jussi Solin

A tailored-for-purpose environmental fatigue testing facility was previously developed to perform direct strain-controlled tests on stainless steel in simulated PWR water. Strain in specimen mid-section is generated by the use of pneumatic bellows, and eddy current measurement is used as a feedback signal. The procedure conforms with the ASTM E 606 practice for low cycle fatigue, giving results which are directly compatible with the major NPP design codes. Past studies were compiled in the NUREG/CR-6909 report and environmental reduction factors Fen were proposed to account for fatigue life reduction in hot water as compared to a reference value in air. This database exclusively contained non-stabilized stainless steels, mainly tested under stroke control. The applicability of the stainless steel Fen factor for stabilized alloys was already challenged in past papers (PVP2013-97500, PVP2014-28465). The results presented in this paper follow the same overall trend of lower experimental values (4.12–11.46) compared to those expected according to the NUREG report (9.49–10.37). In this paper results of a dual strain rate test programme on niobium stabilized AISI 347 type stainless steel are presented and discussed in the context of the NUREG/CR-6909 Fen methodology. Special attention is paid to the effect of strain signal on fatigue life, which according to current prediction methods does not affect the value of Fen.


Author(s):  
Catalin Teodoriu

Fatigue is the most common known problem of drill pipes, since the combination of make-ups performed to connect the pipes and all the external loads, together with the threaded geometry of the connections, will stimulate the appearance of high stress points, cracks and finally promoting considerable economic losses. When threaded connections are used to connect the casing string, the fatigue resistance of the connection will affect the whole integrity of the string, and thus, in most cases, it is lower as the casing body. Generally, fatigue is classified as low-cycle fatigue and multi- or high-cycle fatigue. For Oil Country Tubular Goods (OCTG), a typical high cycle fatigue is represented by drill pipe fatigue in deviated wells. Unlike drill pipe, the casing may be exposed both to low-cycle as well as to high-cycle fatigue. Low-cycle fatigue is a common type of failure when the applied loads induce high stresses in the metallic material. The number of cycles may vary from as low as 10 up to 100. High-cycle fatigue requires a large number of cycles to failure. In order to avoid catastrophic failures, high-cycle fatigue resistance is usually considered to be sufficient if the number of cycles is above 106. The oil business has focused excessively on testing drilling risers and drill pipes under fatigue loads, but when it comes to casing and tubing the experimental approach may require different solutions. Drilling with casing opened the intensive testing of casing connections against fatigue resistance. Moreover, recent papers have shown intensive work on redesigning connections to withstand fatigue. New applications like rotating while running require a rethinking of testing strategy of Casing and Tubing. The following paper focuses on answering the question whether we test enough. The first part compares existing testing facilities, followed by an intensive discussion about the true loads of a casing or tubing connection. Using public testing data, the second part of the paper tries to identify how far the results provided by various types of testing machines can be compared with each other. For example, we found that low cycle fatigue results may not fully reflect the predictions based on extrapolations of high cycle fatigue results.


2020 ◽  
Vol 70 (2) ◽  
pp. 17-21
Author(s):  
Strain Posavljak

This paper is devoted to design of metallic parts exposed to low cycle fatigue. Two flat discs, as representatives of these parts, were discussed. The first with 8, and the second with 64 eccentrically arranged holes. Their resistance to low cycle fatigue was investigated. Cyclic properties of two aerospace steels nominated for workmanship, plus planned revolves per minute and revolves per minute of 5% above planned, are taken into account. On the base of estimated low cycle fatigue life data, good design solution was discovered. On the other hand, it was shown that the both mentioned discs would have a large drop of resistance to low cycle fatigue for revolves per minute of 5% above planned.


Author(s):  
Peng Zhao ◽  
Fu-Zhen Xuan ◽  
De-Long Wu

Fatigue testing for an important turbine rotor material (X12CrMoWVNbN10-1-1 steel) was carried out over a wide range of strain and stress amplitudes at 873K. Particular attention was paid to the effect of control mode on the cyclic deformation behavior and life assessment at elevated temperature. Two main domains were observed depending both on the strain and stress amplitudes, where the effect of control mode was different. In the micro plastic deformation domain, the cyclic softening is slight and there is no clear difference in fatigue behavior between the stress and strain modes. In the plastic damage regime, stress cycling causes more significant softening or damage than strain cycling. The dependence of damage behavior on the evolution of dislocation substructure was focused. On the other hand, it is not possible to use strain based life model to predict fatigue life with the test results under a different control mode. A unified energy-based model is proposed based upon the deformation mechanism and the experimental results, which can assess the low cycle fatigue life with different control modes. The results obtained in this study could have significant implications in the design of structures.


Sign in / Sign up

Export Citation Format

Share Document