scholarly journals Penscriptive Depth-Controlled Robotic Laser Osteotomy

2021 ◽  
Author(s):  
Jamil Jivraj

Bone cutting in surgery is currently done using un-intelligent tools that depend on the proficiency of the surgeon to prevent damage to underlying critical structures. As one can imagine, damage isn’t always prevented. Iatrogenic damage to dura and sub-dural neural structures during osteotomical procedures such as a craniotomy can result in increased patient morbidity. This dissertation proposes the development of a robot-guided laser osteotome (bone cutter) with the use of inline optical coherence tomography (OCT) to precisely control the cutting depth in real-time. The all-fiber system design integrates a high peak-power pulsed Yb-doped fiber laser (1064nm) coupled directly into the sample arm of a swept-source OCT system (λc = 1310nm) with a fourth-order power disparity between the OCT system and fiber laser. Sub-millimeter accuracy was achieved in percussion drilling of phantom and porcine bone. Through the use of optical topographic imaging (OTI), this work presents a novel method for the surgeon to identify arbitrary trajectories for desired cuts. A surgical pencil is used to demarcate cutting trajectories for the robot to follow directly onto the boney surface. OTI imaging combined with a novel algorithm developed through this work allows the penscribed line to be isolated and translated into spatial attitude information for the robot to guide the end effector-mounted laser along. Sub-millimeter trajectory following accuracy was achieved. This work also demonstrates the first use of OCT in continuous, real-time refocusing of the optical end-effector in order to maintain cut quality. The focus of the laser was able to be maintained within the Rayleigh length of the focused Gaussian beam for linear feed rates up to 1mm/s at a 45◦ surface incline. Finally, optimization of bone ablation is explored in this dissertation. The use of graphite as a high-absorption topical chromophore and the use of nitrogen as an assist gas in the form of a coaxial jet are both analyzed to determine how to achieve the highest etch rate in bone. The results in this dissertation show that the topical application of graphite was able to significantly reduce the mean and variance of etching performance; an improvement by at least two orders of magnitude in the time to 0.5mm etch depth is demonstrated. It is also demonstrated that etch rate during ablation can be optimized for coaxial nitrogen flow (30SCFH out of a nozzle with 3mm output diameter); higher and lower flow rates showed slower etch rates. It is hypothesized that a system such as the one developed in this dissertation will increase the precision of bone cutting, decrease the amount of time needed to make cuts into sensitive structures and also address certain issues of unsuccessful uptake of lasers in modern medicine.

2021 ◽  
Author(s):  
Jamil Jivraj

Bone cutting in surgery is currently done using un-intelligent tools that depend on the proficiency of the surgeon to prevent damage to underlying critical structures. As one can imagine, damage isn’t always prevented. Iatrogenic damage to dura and sub-dural neural structures during osteotomical procedures such as a craniotomy can result in increased patient morbidity. This dissertation proposes the development of a robot-guided laser osteotome (bone cutter) with the use of inline optical coherence tomography (OCT) to precisely control the cutting depth in real-time. The all-fiber system design integrates a high peak-power pulsed Yb-doped fiber laser (1064nm) coupled directly into the sample arm of a swept-source OCT system (λc = 1310nm) with a fourth-order power disparity between the OCT system and fiber laser. Sub-millimeter accuracy was achieved in percussion drilling of phantom and porcine bone. Through the use of optical topographic imaging (OTI), this work presents a novel method for the surgeon to identify arbitrary trajectories for desired cuts. A surgical pencil is used to demarcate cutting trajectories for the robot to follow directly onto the boney surface. OTI imaging combined with a novel algorithm developed through this work allows the penscribed line to be isolated and translated into spatial attitude information for the robot to guide the end effector-mounted laser along. Sub-millimeter trajectory following accuracy was achieved. This work also demonstrates the first use of OCT in continuous, real-time refocusing of the optical end-effector in order to maintain cut quality. The focus of the laser was able to be maintained within the Rayleigh length of the focused Gaussian beam for linear feed rates up to 1mm/s at a 45◦ surface incline. Finally, optimization of bone ablation is explored in this dissertation. The use of graphite as a high-absorption topical chromophore and the use of nitrogen as an assist gas in the form of a coaxial jet are both analyzed to determine how to achieve the highest etch rate in bone. The results in this dissertation show that the topical application of graphite was able to significantly reduce the mean and variance of etching performance; an improvement by at least two orders of magnitude in the time to 0.5mm etch depth is demonstrated. It is also demonstrated that etch rate during ablation can be optimized for coaxial nitrogen flow (30SCFH out of a nozzle with 3mm output diameter); higher and lower flow rates showed slower etch rates. It is hypothesized that a system such as the one developed in this dissertation will increase the precision of bone cutting, decrease the amount of time needed to make cuts into sensitive structures and also address certain issues of unsuccessful uptake of lasers in modern medicine.


2021 ◽  
pp. 103786
Author(s):  
Dongdong Han ◽  
Yijie Wang ◽  
Zhanqiang Hui ◽  
Zhixing Zhang ◽  
Kaili Ren ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2346
Author(s):  
Alessandro Tringali ◽  
Silvio Cocuzza

The minimization of energy consumption is of the utmost importance in space robotics. For redundant manipulators tracking a desired end-effector trajectory, most of the proposed solutions are based on locally optimal inverse kinematics methods. On the one hand, these methods are suitable for real-time implementation; nevertheless, on the other hand, they often provide solutions quite far from the globally optimal one and, moreover, are prone to singularities. In this paper, a novel inverse kinematics method for redundant manipulators is presented, which overcomes the above mentioned issues and is suitable for real-time implementation. The proposed method is based on the optimization of the kinetic energy integral on a limited subset of future end-effector path points, making the manipulator joints to move in the direction of minimum kinetic energy. The proposed method is tested by simulation of a three degrees of freedom (DOF) planar manipulator in a number of test cases, and its performance is compared to the classical pseudoinverse solution and to a global optimal method. The proposed method outperforms the pseudoinverse-based one and proves to be able to avoid singularities. Furthermore, it provides a solution very close to the global optimal one with a much lower computational time, which is compatible for real-time implementation.


2012 ◽  
Vol 3 (7) ◽  
pp. 1557 ◽  
Author(s):  
Kenneth K. C. Lee ◽  
Adrian Mariampillai ◽  
Joe X. Z. Yu ◽  
David W. Cadotte ◽  
Brian C. Wilson ◽  
...  

2019 ◽  
Vol 40 (4) ◽  
pp. 393-400
Author(s):  
Ali Nassiri ◽  
Hafida Idrissi-Saba ◽  
Abdelkader Boulezhar

Abstract In this work, we have developed an analytical model of an actively Q-switched Ytterbium-doped fiber laser by using two coupled cavities with amplifying fibers in Mach–Zehnder interferometer configuration. This oscillator system provides high peak power and high energy nanosecond pulse. The pulse energy is almost twice the energy of an individual fiber laser with a combining efficiency goes up 99%. This concept brings some novel perspectives for scaling the high energy and high peak power of nanosecond pulse fiber laser.


2014 ◽  
Vol 926-930 ◽  
pp. 1787-1790
Author(s):  
Zi Qiang Hao ◽  
Hong Zuo Li ◽  
Xin Ren

Compared with continuous laser, pulsed fiber laser has the advantages of high peak power, which is widely used in device processing, military defense and other areas. As the repetition frequency of pulsed fiber laser is low and therefore it cannot realize high rate transmission, this paper does the research on L-PPM modulation of pulsed fiber laser to find a method of effectively improving the modulation rate of pulsed fiber laser. Experimental results show that the L-PPM modulation can improve the transmission rate of the pulsed fiber laser whose repetition frequency is 200K to 1.387Mbps. The research results are useful for the application of pulsed fiber laser in communication.


Sign in / Sign up

Export Citation Format

Share Document