scholarly journals Non-Linear Analysis Of A Nuclear Containment Structure Under High Internal Pressure

2021 ◽  
Author(s):  
Ima Tavakkoli Avval

The main objective of the current study is to investigate the response of an internally pressurized nuclear power plant containment structure at pressure values higher than design pressure, and is focused on the response of prestressed concrete containment to ultimate global structural failure. The containment structure consists of a prestressed concrete cylindrical perimeter wall, with a prestressed concrete tori-spherical dome, prestressed concrete ring beam, and conventionally reinforced concrete base slab. The finite element program ANSYS is used to predict the non-liner behaviour of the containment structure. Different techniques available in ANSYS program to model steel reinforcements for reinforced concrete and prestressed concrete is estimated to define a more suitable approach to model prestressing system. The approach proposed here is capable of incorporating parameters such as variation in tendon layout and non-uniform prestress losses in comparison to those done by other researchers. It is concluded that the design criteria for the containment structure are fully satisfied. No through crack was observed at design pressure. The first through crack develops in the dome at a pressure of 2.1 times the design pressure. There is no damage to be expected to the reactor systems up to a pressure well above design pressure. It is observed that the containment structure subject of this study meets the design requirement of the current standards and behaves linearly in excess of 1.5 times the design pressure. The response of the internally pressurized containment structure including the major openings is investigated. It is concluded that presence of openings does not have a significant effect on the pressure capacity of the containment structure. The minor differences in the responses are at pressure values beyond the linear limit and are less than 5%. The response when openings are included are very similar to those without openings, except at the immediate neighboring of the equipment airlock opening. It is concluded that to predict the pressure response of containment structure, including the openings can be ignored. In case of need for a more exact response, only the equipment airlock can be included in the model

2021 ◽  
Author(s):  
Ima Tavakkoli Avval

The main objective of the current study is to investigate the response of an internally pressurized nuclear power plant containment structure at pressure values higher than design pressure, and is focused on the response of prestressed concrete containment to ultimate global structural failure. The containment structure consists of a prestressed concrete cylindrical perimeter wall, with a prestressed concrete tori-spherical dome, prestressed concrete ring beam, and conventionally reinforced concrete base slab. The finite element program ANSYS is used to predict the non-liner behaviour of the containment structure. Different techniques available in ANSYS program to model steel reinforcements for reinforced concrete and prestressed concrete is estimated to define a more suitable approach to model prestressing system. The approach proposed here is capable of incorporating parameters such as variation in tendon layout and non-uniform prestress losses in comparison to those done by other researchers. It is concluded that the design criteria for the containment structure are fully satisfied. No through crack was observed at design pressure. The first through crack develops in the dome at a pressure of 2.1 times the design pressure. There is no damage to be expected to the reactor systems up to a pressure well above design pressure. It is observed that the containment structure subject of this study meets the design requirement of the current standards and behaves linearly in excess of 1.5 times the design pressure. The response of the internally pressurized containment structure including the major openings is investigated. It is concluded that presence of openings does not have a significant effect on the pressure capacity of the containment structure. The minor differences in the responses are at pressure values beyond the linear limit and are less than 5%. The response when openings are included are very similar to those without openings, except at the immediate neighboring of the equipment airlock opening. It is concluded that to predict the pressure response of containment structure, including the openings can be ignored. In case of need for a more exact response, only the equipment airlock can be included in the model


2011 ◽  
Vol 94-96 ◽  
pp. 2350-2354
Author(s):  
Shu Zhong Lei ◽  
Zhong Xin Wang ◽  
Jian Ting Xu ◽  
Chi Peng Liu

An aqueduct of larger-span prestressed concrete arch structure for river diversion project is located in coastal areas, and raises difficult questions on deformation and stability control of the construction process due to greater wind load and poor soil. Due to the limited width of bracket erection, this paper put forward five possible construction schemes, and does the comparative analysis using three-dimensional finite element program, and gets the economic and reasonable one. Finally conduct a pressure test after the bracket erection, and verify the analysis results using measured stress and deformation data.


2018 ◽  
Vol 149 ◽  
pp. 02016 ◽  
Author(s):  
Yehya Temsah ◽  
Ali Jahami ◽  
Jamal Khatib ◽  
M Sonebi

Many engineering facilities are severely damaged by blast loading. Therefore, many manufacturers of sensitive, breakable, and deformed structures (such as facades of glass buildings) carry out studies and set standards for these installations to withstand shock waves caused by explosions. Structural engineers also use these standards in their designs for various structural elements by following the ISO Damage Carve, which links pressure and Impulse. As all the points below this curve means that the structure is safe and will not exceed the degree of damage based on the various assumptions made. This research aims to derive the Iso-Damage curve of a reinforced concrete beam exposed to blast wave. An advanced volumetric finite element program (ABAQUS) will be used to perform the derivation.


2001 ◽  
Vol 7 (6) ◽  
pp. 419-424
Author(s):  
Arvydas Jurkša

The author has created a new technology for concrete beam, column, slab, wall and shell reinforcement computation according to the finite element program COSMOS/M analysis results and code of practice valid in Lithuania. A brief description of the technology is included in the article. Computer programmes COSARM and COSMAX were designed for slab, wall and shell reinforcement computation. Results can be visualized graphically. New computer programmes BEAM, COSBEAM, COLUMN, COSREC and COSCIR were created for beam and column reinforcement computation. The new technology extremely enlarged the possibilities of the powerful finite element program COSMOS/M and enabled to compute very complicated reinforced concrete structures.


Author(s):  
Pangil Choi ◽  
Lochana Poudyal ◽  
Fouzieh Rouzmehr ◽  
Moon Won

The performance of continuously reinforced concrete pavement (CRCP) in Texas has been quite satisfactory, primarily thanks to the continuous improvements in design and construction. However, severe spalling has been a major problem, and the Texas Department of Transportation (TxDOT) has sponsored several research projects since 1985 to identify solutions for this serious problem. Even though the research efforts were successful in identifying spalling mechanisms, developing a policy that TxDOT could easily implement has been a challenge. To develop a more practical solution to this problem, TxDOT initiated a research study, and the research efforts consisting of identifying CRCP projects with severe and no spalling, obtaining and conducting materials testing on concrete cores from those projects, analyzing the testing data, and performing theoretical analyses to validate the testing results. Among the material properties evaluated, the coefficient of thermal expansion (CTE) of concrete proved to have the best correlation with spalling. Detailed analyses of mechanistic behavior of concrete conducted with an object-oriented finite element program (OOF2) and commercial finite element program verified the reasonableness of the field-testing results. All concrete cores from CRCP with severe spalling had a CTE larger than 5.5 microstrains/°F, whereas no spalling was observed in concrete with a CTE less than that value. Based on this finding, TxDOT now requires the use of coarse aggregate that will produce concrete with a CTE of less than 5.5 microstrains/°F for CRCP construction. It is expected that this implementation will reduce the spalling in CRCP substantially.


Author(s):  
Youmn Al Rawi ◽  
Yehya Temsah ◽  
Hassan Ghanem ◽  
Ali Jahami ◽  
Mohamad Elani

Many research studies have been conducted on the effect of impact loading on structures, and design procedures were proposed for reinforced concrete (RC) slabs; however the availability of these studies and procedures are limited for prestressed slabs. The proposed research will examine, using numerical analysis, the impact of rock fall on prestressed concrete slabs with equivalent moment capacity reinforced concrete slabs. It is expected that prestressed concrete slabs will have different behavior to resist impact loading compared with traditional reinforced concrete slabs. The thickness of the prestressed concrete slab will be 25cm whereas that of the reinforced concrete slab will be 30cm. The impact loading consists of 500Kg drop weight. The drop height will be 10m, 15m and 20m.The structural analysis is performed using a Finite Element program "ABAQUS". A comparison will be done between both slab types in terms of failure mode, damage, and deflection. It has been found that both slabs failed in punching. However, the RC slab performed better than the prestressed concrete slab with respect to the value of the deflection at mid-span, while both showed punching shear mode of failure.


2012 ◽  
Vol 4 (4) ◽  
pp. 320-325
Author(s):  
Aidas Jokūbaitis ◽  
Arnoldas Šneideris

The article discusses principles calculating resistance of a reinforced concrete column to fire. The paper provides column calculation models, the main characteristics of materials and characteristic stress set points applying finite element program SolidWorks. A comparative analysis of stresses in the cross-section of the reinforced concrete column and the reinforced concrete column strengthened with a metallic shell is made. Santrauka Analizuojami gelžbetoninės kolonos atsparumo ugniai skaičiavimo principai. Pateikiami baigtinių elementų programa SolidWorks sudaryti kolonų skaičiuojamieji modeliai, pagrindinės medžiagų charakteristikos ir būdingi įtempių nustatymo taškai. Atliekama gelžbetoninės ir sustiprintos metaliniu apvalkalu gelžbetoninės kolonos įtempių skerspjūvyje lyginamoji analizė.


2011 ◽  
Vol 255-260 ◽  
pp. 209-214
Author(s):  
Xu Jie Sun ◽  
Jian Ping Cao ◽  
Wen Zhong Zheng

To make sure the seismic behavior of outer-jacketing mega frame for storey-adding, a low-cyclic loading test of prestressed concrete beam and a pseudo-static test of Mega frame were analyzed by elastic-plastic finite element program IDARC2D, compared with the test results, skeleton hysteretic curves and restoring force models of structural member were determined. They were used in IDARC2D to study the seismic behavior of mega frame for storey-adding. Some structures designed complied with the Code for Seismic Design of Buildings (GB50011-2001) and correlative literatures about collapse, these structures were reanalyzed after enhancing their seismic measures suitably, collapse were avoided. They are: the main frame of outer-jacketing mega frame in the zone of seismic fortification intensity 8 conforming to seismic grade 1-st, the height of mega frame under 50m conforming to seismic grade 2-nd and that over 50m conforming to seismic grade 1-st in zone of seismic fortification intensity 7. Research achievements will provide reference to engineering application of this structural system.


2019 ◽  
Vol 54 (5) ◽  
Author(s):  
Haider K. Ammash ◽  
Safa S. Kadhim

In the present study, the effect of using reinforced concrete column capital on the punching shear strength of flat slab was investigated. The study was divided into two lines, the first line was the experimental study involves the molding four reinforced concrete flat slab models with dimensions (1600×1600×100 mm) with three different dimensions of column capital (400×400 mm, 600×600 mm, and 800×800 mm) in addition to reference model without columns capital (column dimension 200×200 mm). The second line that numerical modeling through the ABAQUS finite element program was introduced. Effect of column’s capital size and shape of column’s capital (rectangular and circular) were studied experimentally and numerically. A good agreement was obtained between the experimental and theoretical study. The main conclusion that the punching shear strength of reinforced concrete flat slab was affected on the size and shape of a column capital.


2014 ◽  
Vol 644-650 ◽  
pp. 5133-5137
Author(s):  
Ching Yu Hsu ◽  
Cho Chung Liang ◽  
Tso Liang Teng ◽  
Chia Wei Chang

The pressure hull is the most important part of resisting pressure structures of the structural systems. The submerged pressure hull is subjected to very high hydrostatic pressure or underwater explosion load, which creates large compressive stress resultants. Due to this the pressure hull is susceptible to buckling. Buckling phenomena analysis is of greater importance in the design of the submerged pressure hulls. For the pressure hulls with local out-of-roundness, the operating depth will be greatly influenced and thus decreasing capability to resist pressure loading. Thus, this work employs the ABAQUS finite element program to analyze the effect of roundness on the buckling strength for the cylinder pressure hull. Sex kinds of out-of-roundness rateφ, 0%, 1%, 3%, 5%, 10% and 15%, were studied in this study. The bulking depth and collapse depth for the cylinder pressure hull with different out-of-roundness rate were calculated. The Analysis models and results of this study contribute to efforts to design pressure hull structures.


Sign in / Sign up

Export Citation Format

Share Document