scholarly journals Inverse Identification Of Elastic Moduli For 3D Printed PLA, Using Impulse Excitation Technique (IET)

Author(s):  
Afridi Mohsin

3D Printing has recently undergone extensive development due to its lower cost and flexibility. A number of studies have been carried out to determine 3D printed material properties. This study focuses on the determination of the dynamic properties for PLA. The PLA material is processed through the popular FDM method with three different build orientations. A vibration experiment is conducted to evaluate the first modal frequency and Young’s modulus. The results are then compared to the FEM modal analysis and finally the traditional tensile testing results. The anisotropy of the 3D printed components, mainly due to the density changes caused by voids and filament alignment, result in the variation of the Young’s modulus which is different than the homogenous bulk material. The calculated Young’s moduli values are very slightly higher than the tensile test results which is in conformance with the trend documented by earlier studies on similar printed materials using the same techniques

2021 ◽  
Author(s):  
Afridi Mohsin

3D Printing has recently undergone extensive development due to its lower cost and flexibility. A number of studies have been carried out to determine 3D printed material properties. This study focuses on the determination of the dynamic properties for PLA. The PLA material is processed through the popular FDM method with three different build orientations. A vibration experiment is conducted to evaluate the first modal frequency and Young’s modulus. The results are then compared to the FEM modal analysis and finally the traditional tensile testing results. The anisotropy of the 3D printed components, mainly due to the density changes caused by voids and filament alignment, result in the variation of the Young’s modulus which is different than the homogenous bulk material. The calculated Young’s moduli values are very slightly higher than the tensile test results which is in conformance with the trend documented by earlier studies on similar printed materials using the same techniques


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7643
Author(s):  
Szymon Skibicki ◽  
Mateusz Techman ◽  
Karol Federowicz ◽  
Norbert Olczyk ◽  
Marcin Hoffmann

Few studies have focused on determining the Young’s modulus of 3D printed structures. This study presents the results of experimental investigations of Young’s modulus of a 3D printed mortar. Specimens were prepared in four different ways to investigate possible application of different methods for 3D printed structures. Study determines the influence of the number of layers on mechanical properties of printed samples. Results have shown a strong statistical correlation between the number of layers and value of Young’s modulus. The compressive strength and Young’s modulus reduction compared to standard cylindrical sample were up to 43.1% and 19.8%, respectively. Results of the study shed light on the differences between the current standard specimen used for determination of Young’s modulus and the specimen prepared by 3D printing. The community should discuss the problem of standardization of test methods in view of visible differences between different types of specimens.


2016 ◽  
Vol 7 ◽  
pp. 278-283 ◽  
Author(s):  
Liga Jasulaneca ◽  
Raimonds Meija ◽  
Alexander I Livshits ◽  
Juris Prikulis ◽  
Subhajit Biswas ◽  
...  

In this study we address the mechanical properties of Sb2S3 nanowires and determine their Young’s modulus using in situ electric-field-induced mechanical resonance and static bending tests on individual Sb2S3 nanowires with cross-sectional areas ranging from 1.1·104 nm2 to 7.8·104 nm2. Mutually orthogonal resonances are observed and their origin explained by asymmetric cross section of nanowires. The results obtained from the two methods are consistent and show that nanowires exhibit Young’s moduli comparable to the value for macroscopic material. An increasing trend of measured values of Young’s modulus is observed for smaller thickness samples.


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Kamil Anasiewicz ◽  
Józef Kuczmaszewski

This article is an evaluation of the phenomena occurring in adhesive joints during curing and their consequences. Considering changes in the values of Young’s modulus distributed along the joint thickness, and potential changes in adhesive strength in the cured state, the use of a numerical model may make it possible to improve finite element simulation effects and bring their results closer to experimental data. The results of a tensile test of a double overlap adhesive joint sample, performed using an extensometer, are presented. This test allowed for the precise determination of the shear modulus G of the cured adhesive under experimental conditions. Then, on the basis of the research carried out so far, a numerical model was built, taking the differences observed in the properties of the joint material into account. The stress distribution in a three-zone adhesive joint was analyzed in comparison to the standard numerical model in which the adhesive in the joint was treated as isotropic. It is proposed that a joint model with three-zones, differing in the Young’s modulus values, is more accurate for mapping the experimental results.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


1928 ◽  
Vol 24 (2) ◽  
pp. 276-279
Author(s):  
C. F. Sharman

There are two general methods of measuring the elastic constants of bodies; one involves a study of the static deformation produced by the appropriate kind of stress, and the other a measurement of the period of oscillation of a system of known inertia under the elastic forces.


Sign in / Sign up

Export Citation Format

Share Document