scholarly journals A Recommendation Model for Energy-Efficient Data Mining Services Based on Data Properties

Author(s):  
Zainab Al-Zanbouri

Currently, there is a big increase in the usage of data analytics applications and services because of the growth in the data produced from different sources. The QoS properties such as response time and latency of these services are important factors to decide which services to select. As a result of IT expansion, energy consumption has become a big issue. Therefore, establishing a QoS-based web service recommender system that considers energy consumption as one of the essential QoS properties represents a significant step towards selecting the energy efficient web services. This dissertation presents an experimental study on energy consumption levels and latency behavior collected from a set of data mining web services running on different datasets. Our study shows that there is a strong relation between the dataset properties and the QoS properties. Based on the findings from this study, a recommender system is built which considers three dimensions (user, service, dataset). The energy consumption values of candidate services invoked by specific users can be predicted for a given dataset. Afterwards, these services can be ranked according to their predicted energy values and presented to users. We propose three approaches to build our recommender system and we treat it as a context-aware recommendation problem. The dataset is considered as contextual information and we use a context-aware matrix factorization model to predict energy values. In the first approach, we adopt the pre-filtering model where the contextual information serves as a query for filtering relevant rating data. In the second approach, we propose a new method for the pre-filtering implementation. Finally, in the last approach, we adopt the contextual modeling method and we explore different ways of representing dataset information as contextual factors to investigate their impacts on the recommendation accuracy. We compare the proposed approaches with the baseline approaches and the results show the effectiveness of the proposed ones. Also, we compare the performance of the three approaches to discover the best-fit approach when being measured using different metrics. Both prediction and recommendation accuracy of the proposed approaches are significantly better than the baseline models.

2021 ◽  
Author(s):  
Zainab Al-Zanbouri

Currently, there is a big increase in the usage of data analytics applications and services because of the growth in the data produced from different sources. The QoS properties such as response time and latency of these services are important factors to decide which services to select. As a result of IT expansion, energy consumption has become a big issue. Therefore, establishing a QoS-based web service recommender system that considers energy consumption as one of the essential QoS properties represents a significant step towards selecting the energy efficient web services. This dissertation presents an experimental study on energy consumption levels and latency behavior collected from a set of data mining web services running on different datasets. Our study shows that there is a strong relation between the dataset properties and the QoS properties. Based on the findings from this study, a recommender system is built which considers three dimensions (user, service, dataset). The energy consumption values of candidate services invoked by specific users can be predicted for a given dataset. Afterwards, these services can be ranked according to their predicted energy values and presented to users. We propose three approaches to build our recommender system and we treat it as a context-aware recommendation problem. The dataset is considered as contextual information and we use a context-aware matrix factorization model to predict energy values. In the first approach, we adopt the pre-filtering model where the contextual information serves as a query for filtering relevant rating data. In the second approach, we propose a new method for the pre-filtering implementation. Finally, in the last approach, we adopt the contextual modeling method and we explore different ways of representing dataset information as contextual factors to investigate their impacts on the recommendation accuracy. We compare the proposed approaches with the baseline approaches and the results show the effectiveness of the proposed ones. Also, we compare the performance of the three approaches to discover the best-fit approach when being measured using different metrics. Both prediction and recommendation accuracy of the proposed approaches are significantly better than the baseline models.


2018 ◽  
Vol 10 (2) ◽  
pp. 28-50
Author(s):  
Fatima Zahra Lahlou ◽  
Houda Benbrahim ◽  
Ismail Kassou

Context aware recommender systems (CARS) are recommender systems (RS) that provide recommendations according to user contexts. The first challenge for building such a system is to get the contextual information. Some works tried to get this information from reviews provided by users in addition to their ratings. However, all of these works perform important feature engineering in order to infer the context. In this article, the authors present a new CARS architecture that allows to automatically use contextual information from reviews without requiring any feature engineering. Moreover, they develop a new CARS algorithm that is tailored to textual contexts, that they call Textual Context Aware Factorization Machines (TCAFM). An empirical evaluation shows that the proposed architecture allows to significantly improve recommendation accuracy using state of the art RS and CARS algorithms, whereas TCAFM leads to additional improvements.


Author(s):  
Hossein Arabi ◽  
Vimala Balakrishnan ◽  
Nor Liyana Mohd Shuib

Contextual information such as emotion, location and time can effectively improve product or service recommendations, however, studies incorporating them are lacking. This paper presents a context-aware recommender system, personalized based on several user characteristics and product features. The recommender system which was customized to recommend books, was aptly named as a Context-Aware Personalized Hybrid Book Recommender System, which utilized users’ personality traits, demographic details, location, review sentiments and purchase reasons to generate personalized recommendations. Users’ personality traits were determined using the Ten Item Personality Inventory. The results show an improved recommendation accuracy compared to the existing algorithms, and thus indicating that the integration of several filtering techniques along with specific contextual information greatly improves recommendations.


Author(s):  
Mugdha Sharma ◽  
Laxmi Ahuja ◽  
Vinay Kumar

The domain of context aware recommender approaches has made substantial advancement over the last decade, but many applications still do not include contextual information while providing recommendations. Contextual information is crucial for various application areas and should not be ignored. There are generally three algorithms which can be used to include context and those are: pre-filter approach, post-filter approach, and contextual modeling. Each of the algorithms has their own drawbacks. The proposed approach modifies the post filter approach to rectify its shortcomings and combines it with the pre-filter approach based on the importance of contextual attribute provided by the user. The results of experimental setup also demonstrate that the proposed system improves the precision and ranking of the recommendations provided to user. With the help of this hybrid approach, the proposed system eliminates the problem of sparsity which is present in the pre-filter algorithm, and has performance improvement over the traditional post-filter approach.


2021 ◽  
Vol 21 (1) ◽  
pp. 103-118
Author(s):  
Qusai Y. Shambour ◽  
Nidal M. Turab ◽  
Omar Y. Adwan

Abstract Electronic commerce has been growing gradually over the last decade as a new driver of the retail industry. In fact, the growth of e-Commerce has caused a significant rise in the number of choices of products and services offered on the Internet. This is where recommender systems come into play by providing meaningful recommendations to consumers based on their needs and interests effectively. However, recommender systems are still vulnerable to the scenarios of sparse rating data and cold start users and items. To develop an effective e-Commerce recommender system that addresses these limitations, we propose a Trust-Semantic enhanced Multi-Criteria CF (TSeMCCF) approach that exploits the trust relations and multi-criteria ratings of users, and the semantic relations of items within the CF framework to achieve effective results when sufficient rating data are not available. The experimental results have shown that the proposed approach outperforms other benchmark recommendation approaches with regard to recommendation accuracy and coverage.


2021 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Soo-Yeon Jeong ◽  
Young-Kuk Kim

A context-aware recommender system can make recommendations to users by considering contextual information such as time and place, not only the scores assigned to items by users. However, as a user preferences matrix is expanded in a multidimensional matrix, data sparsity is maximized. In this paper, we propose a deep learning-based context-aware recommender system that considers the contextual features. Based on existing deep learning models, we combine a neural network and autoencoder to extract characteristics and predict scores in the process of restoring input data. The newly proposed model is able to easily reflect various type of contextual information and predicts user preferences by considering the feature of user, item and context. The experimental results confirm that the proposed method is mostly superior to the existing method in all datasets. Also, for the dataset with data sparsity problem, it was confirmed that the performance of the proposed method is higher than that of existing methods. The proposed method has higher precision by 0.01–0.05 than other recommender systems in a dataset with many context dimensions. And it showed good performance with a high precision of 0.03 to 0.09 in a small dimensional dataset.


2018 ◽  
Vol 44 (2) ◽  
pp. 455-476
Author(s):  
Jingshuai Zhang ◽  
Yuanxin Ouyang ◽  
Weizhu Xie ◽  
Wenge Rong ◽  
Zhang Xiong

Purpose The purpose of this paper is to propose an approach to incorporate contextual information into collaborative filtering (CF) based on the restricted Boltzmann machine (RBM) and deep belief networks (DBNs). Traditionally, neither the RBM nor its derivative model has been applied to modeling contextual information. In this work, the authors analyze the RBM and explore how to utilize a user’s occupation information to enhance recommendation accuracy. Design/methodology/approach The proposed approach is based on the RBM. The authors employ user occupation information as a context to design a context-aware RBM and stack the context-aware RBM to construct DBNs for recommendations. Findings The experiments on the MovieLens data sets show that the user occupation-aware RBM outperforms other CF models, and combinations of different context-aware models by mutual information can obtain better accuracy. Moreover, the context-aware DBNs model is superior to baseline methods, indicating that deep networks have more qualifications for extracting preference features. Originality/value To improve recommendation accuracy through modeling contextual information, the authors propose context-aware CF approaches based on the RBM. Additionally, the authors attempt to introduce hybrid weights based on information entropy to combine context-aware models. Furthermore, the authors stack the RBM to construct a context-aware multilayer network model. The results of the experiments not only convey that the context-aware RBM has potential in terms of contextual information but also demonstrate that the combination method, the hybrid recommendation and the multilayer neural network extension have significant benefits for the recommendation quality.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sara Qassimi ◽  
El Hassan Abdelwahed ◽  
Meriem Hafidi ◽  
Aimad Qazdar

AbstractThe emergence of collaborative interactions has empowered users by enabling their interactions through tagging practices that create a folksonomy, also called, classification of the shared resources, any identifiable thing or item on the system. In education, tagging is considered a powerful meta-cognitive strategy that successfully engages learners in the learning process. Besides, the collaborative tagging gathers learners’ opinions, thus, provides more comprehensible recommendations. Still, the abundant shared contents are mostly unorganized which makes it hard for users to select and discover the appropriate items of their interests. Thus, the use of recommender systems overcomes the distressing search problem by assisting users in their searching and exploring experience, and suggesting relevant items matching their preferences. In this regard, this article presents a folksonomy graphs based context-aware recommender system (CARS) of annotated books. The generated graphs express the semantic relatedness between these resources, i.e. books, by effectively modeling the folksonomy relationship between user-resource-tag and integrating contextual information within a multi-layer graph referring to a Knowledge Graph (KG). To put our proposal into shape, we model a real-world application of Goodbooks-10k dataset to recommend books. The proposed approach incorporates spectral clustering to deal with the graph partitioning problem. The experimental evaluation shows relevant performance results of graph-based book recommendations.


Author(s):  
Z. Bahramian ◽  
R. Ali Abbaspour ◽  
C. Claramunt

Users planning a trip to a given destination often search for the most appropriate points of interest location, this being a non-straightforward task as the range of information available is very large and not very well structured. The research presented by this paper introduces a context-aware tourism recommender system that overcomes the information overload problem by providing personalized recommendations based on the user’s preferences. It also incorporates contextual information to improve the recommendation process. As previous context-aware tourism recommender systems suffer from a lack of formal definition to represent contextual information and user’s preferences, the proposed system is enhanced using an ontology approach. We also apply a spreading activation technique to contextualize user preferences and learn the user profile dynamically according to the user’s feedback. The proposed method assigns more effect in the spreading process for nodes which their preference values are assigned directly by the user. The results show the overall performance of the proposed context-aware tourism recommender systems by an experimental application to the city of Tehran.


Sign in / Sign up

Export Citation Format

Share Document