scholarly journals The photoluminescent layers based on ZnO nanoparticles as radiation converters in photovoltaic applications

2018 ◽  
pp. 16-26 ◽  
Author(s):  
Natalia Szczecińska ◽  
Katarzyna Znajdek ◽  
Aleksandra Sosna-Głębska ◽  
Paul Lewicki ◽  
Przemysław Czarnecki ◽  
...  

The mismatch between solar cell response and solar spectrum is one of the biggest challenges to achieve high efficiency in photovoltaic cells. There are a few different approaches to minimise this concern. One of them is the radiation conversion which may be due to three different processes, namely up-conversion, down- conversion and down-shifting. In this paper the down-conversion process of zinc oxide nanoparticles (ZnO NPs) and layers with ZnO NPs in polymer (poly (methyl methacrylate)) (PMMA) matrix will be analysed. ZnO NPs are prone to act as down-converting or down-shifting agents, which absorb the UV radiation, which is not absorbed by the solar cell, and then re-emit light in the visible range, which is suited to the photovoltaic cell sensitivity. Herein, the photoluminescence and optical transmittance of ZnO NPs and layers based on ZnO NPs will be presented. These parameters have a large influence on the potential application of these layers in photovoltaic structures for increased efficiency. The conversion layers have to fulfil the following conditions: have good optical transmittance in the visible range and high luminescence efficiency in converting UV radiation into visible. The paper focuses on finding the balance between these parameters.

2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Richard R. King ◽  
Daniel C. Law ◽  
Kenneth M. Edmondson ◽  
Christopher M. Fetzer ◽  
Geoffrey S. Kinsey ◽  
...  

The high efficiency of multijunction concentrator cells has the potential to revolutionize the cost structure of photovoltaic electricity generation. Advances in the design of metamorphic subcells to reduce carrier recombination and increase voltage, wide-band-gap tunnel junctions capable of operating at high concentration, metamorphic buffers to transition from the substrate lattice constant to that of the epitaxial subcells, concentrator cell AR coating and grid design, and integration into 3-junction cells with current-matched subcells under the terrestrial spectrum have resulted in new heights in solar cell performance. A metamorphic Ga0.44In0.56P/Ga0.92In0.08As/ Ge 3-junction solar cell from this research has reached a record 40.7% efficiency at 240 suns, under the standard reporting spectrum for terrestrial concentrator cells (AM1.5 direct, low-AOD, 24.0 W/cm2, 25∘C), and experimental lattice-matched 3-junction cells have now also achieved over 40% efficiency, with 40.1% measured at 135 suns. This metamorphic 3-junction device is the first solar cell to reach over 40% in efficiency, and has the highest solar conversion efficiency for any type of photovoltaic cell developed to date. Solar cells with more junctions offer the potential for still higher efficiencies to be reached. Four-junction cells limited by radiative recombination can reach over 58% in principle, and practical 4-junction cell efficiencies over 46% are possible with the right combination of band gaps, taking into account series resistance and gridline shadowing. Many of the optimum band gaps for maximum energy conversion can be accessed with metamorphic semiconductor materials. The lower current in cells with 4 or more junctions, resulting in lower I2R resistive power loss, is a particularly significant advantage in concentrator PV systems. Prototype 4-junction terrestrial concentrator cells have been grown by metal-organic vapor-phase epitaxy, with preliminary measured efficiency of 35.7% under the AM1.5 direct terrestrial solar spectrum at 256 suns.


Author(s):  
Satya Narayan Mourya ◽  
Pankaj Gupta ◽  
Skand Trivedi

The three dimensional photovoltaic cell is revolutionary silicon solar cell, design to maximize the conversion of sunlight into electricity. It is like container rather than plane conventional solar cell and has ‘High Efficiency Design to produce 200% of the Power Output of the Conventional Solar Cells’. Three dimensional solar has a special feature on the surface to capture more light in the morning and evening hours, as well as in the winter months when the sun is not directly overhead. Unlike conventional solar cells where electrical contact wires run on the top of the cell, blocking sunlight, three dimensional solar cell use a network of contact wires run below the light collector. Solar Tree is energy generating and harvesting tree, in order to increase efficiency “SPIRALLING PHYLLATAXY” technique is applied. It is way of mounting the three dimensional solar panel (leaf) on the top such a way that maximum sunlight incident on it. It can be applied in street lightening system, industrial power supply etc. It is much better than traditional photovoltaic solar system in area point of viewandalso more efficient. It is perfect solution for future energy needandFibonacci Sequence SolarTree is one of advance solar tree. After using three dimensional solar cell in solar tree, the investment payback period of solar panel systems is40%more than conventional solar panel systems.


2014 ◽  
Vol 900 ◽  
pp. 828-831
Author(s):  
Yu Chuan Jiang ◽  
Fang Quan Yang ◽  
Gang Lin Hu

The core of the system is a solar photovoltaic cell, a solar cell to work well not only to the battery materials, structures, is also affected by the external working conditions. Effect of temperature is an important condition of the battery efficiency. In this paper, how temperature affects battery features a comprehensive theoretical study, results showed that at a temperature of 300K, as M1.5 solar spectrum, the theoretical limit of solar cell conversion efficiency of 33%, corresponding to the optimum band gap of 1.4 eV. Provide a basis for the design and experimental battery.


2018 ◽  
Vol 15 (5) ◽  
pp. 549-555 ◽  
Author(s):  
Assiya Haddout ◽  
Abderrahim Raidou ◽  
Mounir Fahoume

Purpose The purpose of this paper is to study the effect of individual layers of cadmium telluride (CdTe) solar cell to improve the efficiency of the photovoltaic cell. Design/methodology/approach To improve the performances of CdTe thin-film solar cells, the thickness of CdTe and cadmium sulfide (CdS) have been modified separately. High-efficiency ultra-thin CdTe solar cell with ZnTe layer as back surface field (BSF) was achieved. The CdTe solar cell is under AM1.5 g illumination using a one-dimensional (1-D) model, i.e. personal computer one dimensional (PC1D). Findings The highest conversion efficiency of about 15.3 per cent was achieved for ultrathin CdTe solar cell with a ZnTe BSF layer. The results of simulation were compared with experimental and analytical results by other researchers. Originality/value In this paper, according to the authors’ knowledge ZnO:Al/CdS/CdTe/ZnTe is simulated by PC1D model for the first time and is compared with experimental result (ZnO:Al/CdS/CdTe). The results show a suitable performance.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 638 ◽  
Author(s):  
Aimal Daud Khan ◽  
Qandeel Rehman ◽  
Adnan Daud Khan ◽  
Fazal E. Subhan ◽  
Muhammad Noman ◽  
...  

Improving the light absorption in thin-film solar cell is essential for enhancing efficiency and reducing cost. Here, we propose an ultra-broadband amorphous silicon solar cell based on a periodic array of titanium ring-shaped metasurfaces, which achieves more than 90% absorptance in the visible range of the solar spectrum. The surface plasmon resonance supported by the nanoparticles together with the resonance induced by the metal–insulator–metal Fabry–Perot cavity leads to this broadband absorption. The impact of various materials of functional layers and the geometric structure of the nanoparticle on absorption performance is discussed in detail, and super broadband resonance is achieved after optimization. Moreover, the optimized solar cell is tested for different solar incidence angles and it is found that the structure exhibits high absorption efficiency even at large angles. Thus, the proposed solar cell design may be beneficial for most of the photovoltaic applications.


2021 ◽  
Author(s):  
Jun Choi ◽  
Kyungkon Kim ◽  
Sung-Jin Kim

Abstract A luminescent solar concentrator (LSC) is a solar-light harvesting device that concentrates light on a photovoltaic cell placed at the edge of an LSC panel to convert it into electricity. The nano-sized inorganic-organic cluster complex (dMDAEMA)4[Re6S8(NCS)6] (where dMDAEMA is 2-dimethyl amino ethyl methacrylate) is a promising candidate for LSC luminophores due to its downshifted broad photoluminescence suitable for photovoltaic cells. However, the low quantum yield (QY) of RMC limits the performance. Here, zinc-doped CuGaS/ZnS core/shell quantum dots (ZQD) were used as energy transferring donor with high QY to improve the performance of the LSC. The two metal chalcogenide luminophores, RMC and ZQD, are chemically suitable for dispersion in an amphiphilic polymer matrix, producing a transparent waveguide with suppressed reabsorption and extended harvesting coverage of the solar spectrum. We achieved an ηopt of 3.47% and a PCE of 1.23% while maintaining greater than 80% transparency in the visible range. The high performance of this dual-dye LSC with suppressed reabsorption, and scattering losses is not only due to uniform dispersion of dyes in a polymer matrix, but also energy transfer from ZQD to RMC. This report suggests a new possibility for promising various multi-dye LSCs for use in building-integrated photovoltaic windows.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaya Madan ◽  
Karanveer Singh ◽  
Rahul Pandey

AbstractThe major losses that limit the efficiency of a single-junction solar cell are thermalization loss and transmission loss. Thus, to efficiently utilize the full solar spectrum and to mitigate these losses, tandem solar cells (TSC) have significantly impacted the photovoltaic (PV) landscape. In this context, the research on perovskite/silicon tandems is currently dominating the research community. The stability improvements of perovskite materials and mature fabrication techniques of silicon have underpinned the rapid progress of perovskite/silicon TSC. However, the low absorption coefficient and high module cost of the silicon are the tailbacks for the mass production of perovskite/silicon TSCs. Therefore, PV technology demands to explore some new materials other than Si to be used as absorber layer in the bottom cell. Thus, here in this work, to mitigate the aforementioned losses and to reduce cost, a 23.36% efficient two-terminal perovskite-PbS CQD monolithic tandem solar cell has been designed through comprehensive device simulations. Before analyzing the performance of the proposed TSC, the performance of perovskite top cells has been optimized in terms of variation in optical properties, thickness, and interface defect density under standalone conditions. Thereafter, filtered spectrum and associated integrated filtered power by the top cell at different perovskite thickness from 50 to 500 nm is obtained to conceive the presence of the top cell above the bottom cell with different perovskite thickness. The current matching by concurrently varying the thickness of both the top and bottom subcell has also been done to obtain the maximum deliverable tandem JSC for the device under consideration. The top/bottom subcell with current matched JSC of 16.68 mA cm−2/16.62 mA cm−2 showed the conversion efficiency of 14.60%/9.07% under tandem configuration with an optimized thickness of 143 nm/470 nm, where the top cell is simulated under AM1.5G spectrum, and bottom cell is exposed to the spectrum filtered by 143 nm thick top cell. Further, the voltages at equal current points are added together to generate tandem J–V characteristics. This work concludes a 23.36% efficient perovskite-PbS CQD tandem design with 1.79 V (VOC), 16.67 mA cm−2 (JSC) and 78.3% (FF). The perovskite-PbS CQD tandem device proposed in this work may pave the way for the development of high-efficiency tandem solar cells for low-cost applications.


2021 ◽  
Vol 889 (1) ◽  
pp. 012057
Author(s):  
Rinku Kumari ◽  
Karan Singh Vinayak ◽  
Deepak Kumar

Abstract Extended efficiency of solar cells to ensemble more solar energy as well as its optimum conversion and utilization is believed to be a major challenge in current times. The spectral mismatch between the distribution of energy in the solar spectrum incidence and the semiconducting material band gap is a major restriction in the performance of solar cells. The conversion of wavelength of the sun is a necessary requisite to reduce spectral disruption. Of late, the solar cell converters are presumed as up-converted components and products derived from down conversion. Materials like NaCsWO3, NaYF4, and NaYF4: Yb, Er are synthesized and used to overcome the problem like deficiency of up-conversion luminescence (UCL) materials and device structures. The intensity of UCL can be enhanced by a significant time when the amount of NaCsWO3 is 2.8 m mol per cent. UCL material is considered as one of the best approaches to obtain high-efficiency perovskite solar cells (PSCs). In order to overcome these difficulties, not only were these effective up-conversion nano-particles (UPCNPs) doped into the hole layer but the perovskite foil was also modified in PSCs. The highest power conversion (PCE) performance reached 18.89%. Enhanced UCLs allow for UCNPs to extend the recognition spectrum of near PSCs. The objective of this comprehensive and focused review is to highlight the different synthesis techniques used in up-conversion nano-materials, for solar cell applications along with a theoretical perspective in this regard.


2006 ◽  
Vol 129 (3) ◽  
pp. 336-339 ◽  
Author(s):  
C. Algora ◽  
I. Rey-Stolle ◽  
I. García ◽  
B. Galiana ◽  
M. Baudrit ◽  
...  

Concentration photovoltaic (PV) based on III–V solar cells is one of the most promising technologies for dramatically reducing the cost of PV electricity. In order to reduce costs, a high efficiency is usually pursued. This is the main reason for the huge development of multijunction cells (MJCs) which are able to achieve very high efficiencies thanks to their more efficient use of the solar spectrum. In the first stage, our approach to reduce the cost of photovoltaic electricity consists of a further development of the lattice matched GaInP∕GaAs dual junction solar cell in order to achieve efficiencies of over 30% at 1000 suns (AM1.5D low aerosol optical depth (AOD)). In the second stage, this approach will allow us to develop lattice matched GaInP∕Ga(In)As∕Ge triple junction solar cells with higher efficiency and lower cost. In this technical brief, we have set out the philosophy, including a brief incursion into economics, and our first results of dual-junction solar cells for high concentrator applications. Our best result is an efficiency of 27.6% at 180 suns while at 1000 suns the efficiency is 26% (AM1.5D low AOD). The price of a PV installation based on our best solar cell to date (efficiency of 26% operating at 1000 suns) would be 3.6$∕Wp. For solar cells with efficiencies of 30% at 1000 suns, the price after a cumulated production of 10MWp of a PV installation would be 3.3$∕Wp. The efficiencies attained (∼26%) at 1000 suns although still far from our objective of 30%, establish a reasonable starting point for future developments. It is evident that the conservative design implemented has much room for improvement which is now under development in our lab.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Choi ◽  
Kyungkon Kim ◽  
Sung-Jin Kim

AbstractA luminescent solar concentrator (LSC) is a solar-light harvesting device that concentrates light on a photovoltaic cell placed at the edge of an LSC panel to convert it into electricity. The nano-sized inorganic–organic cluster complex (dMDAEMA)4[Re6S8(NCS)6] (this refers to RMC where dMDAEMA is 2-dimethyl amino ethyl methacrylate) is a promising candidate for LSC luminophores due to its downshifted broad photoluminescence suitable for photovoltaic cells. However, the low quantum yield (QY) of RMC limits the performance. Here, zinc-doped CuGaS/ZnS core/shell quantum dots (ZQD) were used as energy transferring donor with high QY to improve the performance of the LSC. The two metal chalcogenide luminophores, RMC and ZQD, are chemically suitable for dispersion in an amphiphilic polymer matrix, producing a transparent waveguide with suppressed reabsorption and extended harvesting coverage of the solar spectrum. We achieved an ηopt of 3.47% and a PCE of 1.23% while maintaining greater than 80% transparency in the visible range. The high performance of this dual-dye LSC with suppressed reabsorption, and scattering losses is not only due to uniform dispersion of dyes in a polymer matrix, but also energy transfer from ZQD to RMC. This report suggests a new possibility for promising various multi-dye LSCs for use in building-integrated photovoltaic windows.


Sign in / Sign up

Export Citation Format

Share Document