scholarly journals Diversity and structure of arbuscular mycorrhizal fungal commmunities and their chemical drivers across dryland habitats in Qatar

2020 ◽  
Author(s):  
Sakeenah Adenan ◽  
Jane Oja ◽  
Juha Alatalo ◽  
Amjad Shraim ◽  
Mohammed Hussain Alsafran ◽  
...  

Qatar is largely characterized by a hyper-arid climate and low soil fertility, which combine to create a stressful soil environment for arbuscular mycorrhizal (AM) fungi. Here we present a study on AM fungi communities and their relationship to soil chemical characteristics. We used high-throughput seqeuncing technique for identifying AM fungal diversity and community composition from different habitat types across Qatar. We found 127 AM fungal taxa, of which majority wee members of the family Glomeraceae. In contrast to what was hypothesized, AM fungi were mainly influenced by soil phosphorous and potassium. Chemical soil properties explained 76% of the variation in AM fungi between locations. The lowest AM fungal diversity was observed in barren areas and sand dunes, possibly due to low bioavailability of total nitrogen, while the highest diversity was observed in well-developed grass patches. Present AM fungi in Qatar were not affected by soil and pH; these fungi have likely been exposed to high salinities through their evolutionary history in the region, favoring resistant AM fungi through natural selection. These findings provide baseline information on AM fungal assemblages from the Arabian Peninsula, and thus contribute to better understanding of global patterns of AM fungi and their chemical drivers.

2021 ◽  
Vol 9 (2) ◽  
pp. 229
Author(s):  
Martti Vasar ◽  
John Davison ◽  
Siim-Kaarel Sepp ◽  
Maarja Öpik ◽  
Mari Moora ◽  
...  

Deserts cover a significant proportion of the Earth’s surface and continue to expand as a consequence of climate change. Mutualistic arbuscular mycorrhizal (AM) fungi are functionally important plant root symbionts, and may be particularly important in drought stressed systems such as deserts. Here we provide a first molecular characterization of the AM fungi occurring in several desert ecosystems worldwide. We sequenced AM fungal DNA from soil samples collected from deserts in six different regions of the globe using the primer pair WANDA-AML2 with Illumina MiSeq. We recorded altogether 50 AM fungal phylotypes. Glomeraceae was the most common family, while Claroideoglomeraceae, Diversisporaceae and Acaulosporaceae were represented with lower frequency and abundance. The most diverse site, with 35 virtual taxa (VT), was in the Israeli Negev desert. Sites representing harsh conditions yielded relatively few reads and low richness estimates, for example, a Saudi Arabian desert site where only three Diversispora VT were recorded. The AM fungal taxa recorded in the desert soils are mostly geographically and ecologically widespread. However, in four sites out of six, communities comprised more desert-affiliated taxa (according to the MaarjAM database) than expected at random. AM fungal VT present in samples were phylogenetically clustered compared with the global taxon pool, suggesting that nonrandom assembly processes, notably habitat filtering, may have shaped desert fungal assemblages.


2006 ◽  
Vol 8 (6) ◽  
pp. 971-983 ◽  
Author(s):  
Marta Vallino ◽  
Nadia Massa ◽  
Erica Lumini ◽  
Valeria Bianciotto ◽  
Graziella Berta ◽  
...  

2003 ◽  
Vol 30 (7) ◽  
pp. 729 ◽  
Author(s):  
Patrick A. Ndakidemi ◽  
Felix D. Dakora

Flavonoids and nitrogenous metabolites such as alkaloids, terpenoids, peptides and amino acids are major components of plant seeds. Conjugated forms of these compounds are soluble in water, and therefore, are easily released as chemical signals following imbibition. Once in the soil, these metabolites are first in line to serve as eco-sensing signals for suitable rhizobia and arbuscular mycorrhizal (AM) fungal partners required for the establishment of symbiotic mutualisms. They may also serve as defence molecules against pathogens and insect pests, as well as playing a role in the control of parasitic members of the family Scrophulariaceae, especially Striga, a major plant pest of cereal crops in Africa. Seed metabolites such as flavonoids, alkaloids, terpenoids, peptides and amino acids define seedling growth and, ultimately, crop yields. Thus, an improvement in our understanding of seed chemistry would permit manipulation of these molecules for effective control of pathogens, insect pests, Striga and destructive weeds, as well as for enhanced acquisition of N and P via symbioses with soil rhizobia and AM fungi.


2020 ◽  
Vol 7 (2) ◽  
pp. 30-38
Author(s):  
Santhoshkumar S ◽  
Nagarajan N ◽  
Sree Priya S

In the present study to analyzed that the arbuscular mycorrhizal fungal spores in root colonization and spore population in rhizosphere soils samples in various medicinal at Paithal hills,Western Ghats of Kannur district, Kerala, India. Root and rhizosphere soil samples were collected during the month of August, 2018-March, 2019 from the surface to 30 cm depth as well as pH were also recorded. Totally 30 plant species belonging to 19 families were collected and identified. The present result showed arbuscular mycorrhizal spore population in the rhizosphere soil and root colonization of all the plant species. A total of 19 AM fungal spores were recovered from the rhizosphere soil samples in this study region. The Glomus was dominant had seen in rhizosphere soil samples in all the medicinal plant species. The maximum spore population was found in the rhizosphere soil samples of Mimosa pudica (590/100g of soil) which belongs to the family Mimosaceae and the lowest spore population was observed in the Terminalia bellirica 135/100g of soil) belongs to Combretaceae family. The highest  78 % AM fungal colonization was found in roots of Euphorbia hirta belongs to the family Euphorbiaceae. While the lowest 11 % AM fungal colonization was found in the root of Sida acuta belongs to the family Malvaceae.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Veronika Řezáčová ◽  
Milan Řezáč ◽  
Hana Gryndlerová ◽  
Gail W. T. Wilson ◽  
Tereza Michalová

AbstractIn a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.


Sign in / Sign up

Export Citation Format

Share Document