Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi

2019 ◽  
Author(s):  
Amy E. Zanne ◽  
Kessy Abarenkov ◽  
Michelle E. Afkhami ◽  
Carlos A. Aguilar-Trigueros ◽  
Scott Bates ◽  
...  

Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.

ISRN Forestry ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Nathan G. Swenson

Tropical tree biodiversity motivates an extremely large amount of research and some of the most passionate debates in ecology and evolution. Research into tropical tree biodiversity generally has been very biased towards one axis of biodiversity-species diversity. Less work has focused on the functional diversity of tropical trees and I argue that this has greatly limited our ability to not only understand the species diversity in tropical tree assemblages, but their distributions through space and time. Increasingly plant ecologists have turned to measuring plant functional traits to estimate functional diversity and to uncover the ecological and evolutionary mechanisms underlying the distribution and dynamics of tropical trees. Here I review much of the recent work on functional traits in tropical tree community ecology. I will highlight what I believe are the most important findings and which research directions are not likely to progress in the future. I also argue that functionally based investigations of tropical trees are likely to be revolutionized in the coming years through the incorporation of functional genomic approaches. The paper ends with a discussion of three major research areas or areas in need of focus that could lead to rapid advances in functionally based investigations of tropical trees.


2021 ◽  
Author(s):  
Gabriela Martins Sophia ◽  
João Paulo Darella Filho ◽  
Caio Fascina ◽  
Bianca Fazio Rius ◽  
Bárbara Rocha Cardeli ◽  
...  

<p>Several dynamic global vegetation models (DGVMs) have been developed to better understand the vegetation's response to climate changes. However, DGVMs generate variable responses on the role of vegetation in the biogeochemical cycles, partially explained by the generalization made regarding the functional diversity, since it is represented by a small set of plant functional types. Trait-based models, which seek to include the variability of functional traits, emerge as a promising alternative for a better representation of the different plant life strategies, and consequently of functional diversity. Including leaf phenology in these models is of paramount importance because it plays a role in controlling the seasonality of carbon, water, and energy fluxes, but the models do not represent or represent inefficiently the phenology. In tropical ecosystems, such as in the Amazon, phenology is mainly driven by soil water availability and evapotranspirative demand, so simulating the impacts of a predicted drier climate require the representation of the connection between phenology and the hydraulic strategies of plants. Therefore, this work aims to contribute to the development of the CAETÊ trait-based model through the implementation of a leaf phenology module linked to plant hydraulic system. This development is being applied to the Amazon basin and its main objective is to improve the representation of the seasonality of vegetation with consequent improvement in the carbon and water cycle, and therefore to assess the impacts of climate changes on it. For this, two functional traits are being used as variants: ψ50 (xylem water potential at which 50% loss of hydraulic conductivity occurs) and τleaves (leaf carbon residence time). Through an environmental filter mechanism and traits trade-offs, each grid cell restricts the performance and survivorship of trait values combinations. The model is being applied under a 30% reduction of precipitation and increasing [CO<sub>2</sub>] to 600 ppmv. As preliminary results we have the performance of the equations that represent phenology and hydraulics developed offline from the model code, which represented the Leaf Economics Spectrum related to the τleaves, besides the isohydric and anisohydric strategies related to the ψ50 (e.g. high P50 values [-1 MPa] interrupted the hydraulic conductance in ~ 0.5 soil water [W; gH20 / gsoil], while low P50 values [-7 MPa] maintained conductance up to W = ~ 0.3). As expected results, two scales will be analyzed: at the community level, it is expected that it will present a change in the functional composition (i.e. composition of phenological and hydraulic strategies) in order to favor strategies that better deal with the new environmental conditions; at the ecosystem level, it is expected that this change in functional composition will alter the primary productivity and evapotranspiration. Finally, it is expected that the approach used will act as an alternative to investigate the relationship between hydraulics and phenology in Amazon in a less discretized way compared to a PFT approach, since this work is being a pioneer in considering this relation along with a logic of variant functional traits. Final results will be obtained before the EGU congress takes place.</p>


2016 ◽  
Vol 24 (8) ◽  
pp. 922-931 ◽  
Author(s):  
Lingjie Lei ◽  
◽  
Deliang Kong ◽  
Xiaoming Li ◽  
Zhenxing Zhou ◽  
...  

Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractObesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the metabolic health of the host.


2018 ◽  
Vol 7 (4) ◽  
pp. 38 ◽  
Author(s):  
Valeria D’Argenio

The last few years have featured an increasing interest in the study of the human microbiome and its correlations with health status. Indeed, technological advances have allowed the study of microbial communities to reach a previously unthinkable sensitivity, showing the presence of microbes also in environments usually considered as sterile. In this scenario, microbial communities have been described in the amniotic fluid, the umbilical blood cord, and the placenta, denying a dogma of reproductive medicine that considers the uterus like a sterile womb. This prenatal microbiome may play a role not only in fetal development but also in the predisposition to diseases that may develop later in life, and also in adulthood. Thus, the aim of this review is to report the current knowledge regarding the prenatal microbiome composition, its association with pathological processes, and the future perspectives regarding its manipulation for healthy status promotion and maintenance.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sandra Cristina Müller ◽  
Rodrigo Scarton Bergamin ◽  
Kauane Maiara Bordin ◽  
Joice Klipel ◽  
Milena Fermina Rosenfield

Secondary forests originate from natural regeneration after fallow (succession) or restoration. Species assembly in these communities, which can affect ecosystem functions and successional trajectories, is very unpredictable. Trait-based trajectories can shed light on the recovery of ecosystem functions and enable predictions of how the regenerating communities will change with forest age. Regeneration communities are affected by initial conditions and also by canopy structure and functional traits that alter dispersers' attractiveness and coexistence mechanisms. Here we evaluated how community functional traits change over time and tested if functional diversity and composition of the established canopy, as well as the structure of the canopy and forest age, influence the functional structure of regenerating tree communities when compared to their reference forests. For this, we calculated dissimilarity in trait composition (community-weighted means) and in functional diversity of regenerating communities of each succession/restoration stand, using the tree stratum of nearby mature forests as baseline values. Functional trait information comprises leaf, wood density, and reproductive traits from tree species. Our community data contain information from natural successional forests and restoration sites, in the South-Brazilian Atlantic Forest. Predictor variables of functional dissimilarities were forest age, canopy structural variables, canopy functional composition, and functional diversity. Results showed leaf traits (leaf dry matter content, leaf nitrogen content, leaf nitrogen-phosphorus ratio) and seed mass varying with forest age. Canopy functional composition based on leaf traits and total basal area significantly predicted multiple trait functional dissimilarity between the regeneration component of secondary forests and their reference community values. Dissimilarity increased when the canopy was composed of species with more acquisitive traits. Difference in functional diversity was only influenced by forest age. Mid-stage secondary forests showed lower functional diversity than early-stage forests. Our results indicated the importance of canopy traits on the natural regeneration of secondary subtropical forests. If functional similarity with reference forests is a desired objective in order to recover ecosystem functions through natural regeneration, leaf functional traits of canopy trees that establish or are planted in degraded areas must be considered in the successional processes.


2019 ◽  
Vol 26 (7) ◽  
pp. R415-R439 ◽  
Author(s):  
Carles Zafon ◽  
Joan Gil ◽  
Beatriz Pérez-González ◽  
Mireia Jordà

In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.


2018 ◽  
pp. 174-207
Author(s):  
Nasim Mortazavi ◽  
Cecile Staquet ◽  
Audrey Vanhaudenhuyse ◽  
Andrea Soddu ◽  
Marie-Elisabeth Faymonville ◽  
...  

This chapter reviews current knowledge of the effects of hypnotic anesthetic agents on brain resting-state networks (RSNs) that sustain consciousness. Although full exploration of the networks under anesthesia is not yet available, current evidence indicates that anesthetic agents with hypnotic properties dose-dependently modulate RSN functioning. Each anesthetic agent has specific effects that are not uniform within a given network and probably correlate with the specific clinical features observed when one agent or another is used. Observations made on RSNs during anesthesia are supplementary arguments to link the networks with specific aspects of consciousness and connectedness to the environment and to confirm their physiological functions. The precise link between observations made on RSNs during anesthesia and known biochemical targets of anesthetic agents, or their effects on systems that regulate the sleep–wake cycle, is not established yet. PET studies using radiolabeled probes that specifically target a neurotransmission system offer insights into the links. New technological advances and modes of functional data analysis, such as Granger causality and dynamic causal modeling, will help in obtaining a more in-depth exploration of the complex interactions between brain regions, their modulation by anesthesia, and their role in information processing by the brain. Effects of hypnosis on RSNs also have been studied. The hypnotic state is useful for performing surgical procedures and explorations without general anesthesia. The hypnotic state is associated with specific changes in the activity of RSNs that confirm hypnosis as a specific brain state, different from normal wakeful consciousness and anesthetic states.


BioScience ◽  
2019 ◽  
Vol 69 (10) ◽  
pp. 800-811 ◽  
Author(s):  
Christophe Malaterre ◽  
Antoine C Dussault ◽  
Sophia Rousseau-Mermans ◽  
Gillian Barker ◽  
Beatrix E Beisner ◽  
...  

Abstract Functional diversity holds the promise of understanding ecosystems in ways unattainable by taxonomic diversity studies. Underlying this promise is the intuition that investigating the diversity of what organisms actually do (i.e., their functional traits) within ecosystems will generate more reliable insights into the ways these ecosystems behave, compared to considering only species diversity. But this promise also rests on several conceptual and methodological (i.e., epistemic) assumptions that cut across various theories and domains of ecology. These assumptions should be clearly addressed, notably for the sake of an effective comparison and integration across domains, and for assessing whether or not to use functional diversity approaches for developing ecological management strategies. The objective of this contribution is to identify and critically analyze the most salient of these assumptions. To this aim, we provide an epistemic roadmap that pinpoints these assumptions along a set of historical, conceptual, empirical, theoretical, and normative dimensions.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
R W Blob ◽  
R Lagarde ◽  
K M Diamond ◽  
R M Keeffe ◽  
R S Bertram ◽  
...  

Synopsis The evolution of novel functional traits can contribute substantially to the diversification of lineages. Older functional traits might show greater variation than more recently evolved novelties, due to the accrual of evolutionary changes through time. However, functional complexity and many-to-one mapping of structure to function could complicate such expectations. In this context, we compared kinematics and performance across juveniles from multiple species for two styles of waterfall-climbing that are novel to gobiid fishes: ancestral “powerburst” climbing, and more recently evolved “inching”, which has been confirmed only among species of a single genus that is nested within the clade of powerburst climbers. Similar net climbing speeds across inching species seem, at first, to indicate that this more recently evolved mode of climbing exhibits less functional diversity. However, these similar net speeds arise through different pathways: Sicyopterus stimpsoni from Hawai’i move more slowly than S. lagocephalus from La Réunion, but may also spend more time moving. The production of similar performance between multiple functional pathways reflects a situation that resembles the phenomenon of many-to-one mapping of structure to function. Such similarity has the potential to mask appropriate interpretations of relative functional diversity between lineages, unless the mechanisms underlying performance are explored. More specifically, similarity in net performance between “powerburst” and “inching” styles indicates that selection on climbing performance was likely a limited factor in promoting the evolution of inching as a new mode of climbing. In this context, other processes (e.g., exaptation) might be implicated in the origin of this functional novelty.


Sign in / Sign up

Export Citation Format

Share Document