scholarly journals STUDI LABORATORIUM PEMILIHAN ADDITIF PENSTABIL SHALE DI DALAM SISTEM LUMPUR KCL-POLIMER PADA TEMPERATUR TINGGI

2019 ◽  
Vol 3 (1) ◽  
pp. 50
Author(s):  
Zakky Zakky ◽  
Bayu Satyawira ◽  
Samsol Samsol

Mud is one of the things that is very supportive in drilling operations, the design of the mud can affect the effectiveness of drilling work, the costs to be incurred, up to when the well is in production. Of course what is expected from a mud usage is low expenditure and drilling with optimal results. Drilling mud plays a very important role in a drilling operation. Drilling that can run quickly, safely and economically is greatly influenced by the conditions and sludge system used. The condition referred to here is how the properties or rheology of the mud. Whereas the mud system referred to here is a certain type of mud that must be used with regard to the state of the formation and borehole. Muddy KCl-POLYMER is a non-dispersed mud, where the hydration and dispersion process of the shale formation drilled must be maintained or maintained as much as possible. There are several ways to achieve this, the most common of which is to limit the amount of water that reacts with the shale, by covering the cutting produced by the shale with the polymer as soon as possible to prevent further reactions with water. In this study, we will analyze the use and physical properties of drilling mud using KCl-Polymer sludge which is carried out in the Trisakti University Laboratory of Petroleum Drilling and Production.

2021 ◽  
pp. 1-7
Author(s):  
Pouria Roodbari ◽  
Samad Sabbaghi

Summary Drilling mud plays a significant role in the drilling operation because it is influential in the quality of the drilled well and the efficiency of the drilling operation. In this paper, we aim to identify the methods to improve the effectiveness of drilling operations by analyzing and evaluating the impact of adding polyacrylamide and a barite/polyacrylamide nanocomposite, synthesized through the solution polymerization method, on the properties of drilling mud. The study added the synthesized nanocomposite to the water-based drilling mud (350 cm3 water with 10 g bentonite) and examined the properties of the drilling mud, including viscosity, fluid loss, and mudcake thickness. Overall, the results indicated that the addition of the synthesized nanocomposite caused a decrease in fluid loss and the thickness of the mudcake, while it increased the drilling mud’s viscosity.


Author(s):  
Apriandi Rizkina Rangga Wastu ◽  
Muhammad Taufiq Fathaddin ◽  
Abdul Hamid

<p><em>In drilling operations, drilling mud plays a very important role because it is irreplaceable functions. Drilling activities relate to problems caused by complex conditions in formation due to changes in temperature, pressure, and contamination from formation fluids. Using Oil Base Mud (OBM) mud systems in the form of Saraline and Smooth Fluid 05 is tested for drilling fluid performance and the results can be a reference for drilling operation. This research consist of two parts, the first: determining the drilling mud rheology value in the form of (Plastic Viscosity, Yield Point and Gel Strength) in each drilling mud of Saraline and Smooth fluid 05 mud using various high temperature parameters of 350<sup>o</sup>F, 300<sup>o</sup>F, and 270<sup>o</sup>F. The results of the mud rheology tests show at the higher the temperature, the values of rheology decreases. The second experiment is to determine the level of electrical stability in the mud which functions of oil-wet content in oil sludge (Saraline and Smooth fluid 05). The electrical stability value has a minimum limit value in OBM, which is 500 volts. In this experiment showed that the higher the temperature value, the electrical stability value in the mud will decrease, but in this study the value of electrical stability in Saraline mud and Smooth fluid 05 has a value above 500 volts, the composition OBM of Saraline and Smooth Fluid 05 sludge has very good oilwet content</em><em>.</em></p>


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Yuanhua Lin ◽  
Xiangwei Kong ◽  
Yijie Qiu ◽  
Qiji Yuan

Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


2019 ◽  
Vol 808 ◽  
pp. 27-32
Author(s):  
Miloslav Novotný ◽  
Miloslav Novotný ◽  
Karel Šuhajda

The article deals with the methodology of the assessment of the state of the external facade of the outer cladding façade from the fiber cementitious boards in view of meeting the conditions of the technical legislation valid in the Czech Republic. On a particular case, the methodology of the procedure from the visual assessment of the facade facing plates to the requirements of their mechanical and physical properties is described. The object under consideration is a civic building in a climatically challenging location in the Beskydy foothills, whose facade is completely lined with fiber-cement boards. The assessment is based on the provisions of ČSN ISO 13822 (73 0038): Design principles for structures - Evaluation exists. construction and ČSN P 74 7251: 2015 Folded cladding, tiles and panel cladding - Requirements for casting accuracy, quality and appearance. For the assessment of mechanical and physical properties, the provisions of ČSN EN 12467 - Fiber-cement flat plates - Specimen specification and test method are used. Limit values ​​of individual parameters are taken into account in the technical sheets of the manufacturer of fiber-cement boards.


Author(s):  
Cezar Francisco Araujo-Junior ◽  
Vinicius Cesar Sambatti ◽  
João Henrique Vieira de Almeida Junior ◽  
Henrique Hiroki Yamada

Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6246
Author(s):  
Borivoje Pašić ◽  
Nediljka Gaurina-Međimurec ◽  
Petar Mijić ◽  
Igor Medved

The drilling of clay-rich formations, such as shale, is an extremely demanding technical and technological process. Shale consists of mixed clay minerals in different ratios and in contact with water from drilling mud. It tends to swell and cause different wellbore instability problems. Usually, the petroleum industry uses various types of salt and/or polymers as shale hydration inhibitors. The aim of this research was to determine whether nanoparticles can be used as shale swelling inhibitors because due to their small size they can enter the shale nanopores, plug them and stop further penetration of mud filtrate into the shale formation. Swelling of bentonite-calcium carbonate pellets after 2 and 24 h in water and drilling mud (water, bentonite, PAC and NaOH) without nanoparticles and with addition of TiO2 (0.5, 1 and 1.5 wt%) and SiO2 (0.5, 1 and 1.5 wt%) nanoparticles was measured using a linear swell meter. Additionally, granulometric analyses of bentonite as well as the zeta potential of tested muds containing nanoparticles were performed. Based on the laboratory research, it can generally be concluded that the addition of SiO2 and TiO2 nanoparticles in water and base drilling mud reduces the swelling of pellets up to 40.06%.


Sign in / Sign up

Export Citation Format

Share Document