Investigating the Properties of Modified Drilling Mud with Barite/Polyacrylamide Nanocomposite

2021 ◽  
pp. 1-7
Author(s):  
Pouria Roodbari ◽  
Samad Sabbaghi

Summary Drilling mud plays a significant role in the drilling operation because it is influential in the quality of the drilled well and the efficiency of the drilling operation. In this paper, we aim to identify the methods to improve the effectiveness of drilling operations by analyzing and evaluating the impact of adding polyacrylamide and a barite/polyacrylamide nanocomposite, synthesized through the solution polymerization method, on the properties of drilling mud. The study added the synthesized nanocomposite to the water-based drilling mud (350 cm3 water with 10 g bentonite) and examined the properties of the drilling mud, including viscosity, fluid loss, and mudcake thickness. Overall, the results indicated that the addition of the synthesized nanocomposite caused a decrease in fluid loss and the thickness of the mudcake, while it increased the drilling mud’s viscosity.

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2018 ◽  
Vol 5 (1) ◽  
pp. 1514575 ◽  
Author(s):  
Richard O. Afolabi ◽  
Peter Paseda ◽  
Sedogan Hunjenukon ◽  
Esther A. Oyeniyi ◽  
Zhibing Zhang

2021 ◽  
pp. 1-10
Author(s):  
Hameed Hussain Ahmed Mansoor ◽  
Srinivasa Reddy Devarapu ◽  
Robello Samuel ◽  
Tushar Sharma ◽  
Swaminathan Ponmani

Summary Drilling technology in petroleum engineering is associated with problems such as high fluid loss, poor hole cleaning, and pipe sticking. Improvement of rheological and filtration properties of water-based drilling fluids (WDFs) plays a major role in resolving these drilling problems. The application of nanotechnology to WDF in the recent past has attracted much attention in addressing these drilling operations problems. In the present work, we investigate the application of natural aloe vera and CuO nanofluids combined as an additive in WDF to address the drilling problems. The nanofluids of three different concentrations of CuO nanoparticle (0.2, 0.4 , and 0.6 wt%) with aloe vera as a base fluid are prepared for this study by adopting a two-step method. The prepared nanofluids are characterized by their particle size and morphological characteristics. Conventional WDF (DF.0) is synthesized, and the prepared aloe-vera-based CuO nanofluid is added to the WDF to prepare nanofluid-enhancedwater-based drilling fluid (NFWDF) of different concentrations of nanoparticles, namely, 0.2 , 0.4, and 0.6 wt%. The prepared drilling fluid mixture is then characterized for its rheological and filtrate loss properties at various temperatures. Thermal stability and aging studies are performed for both WDF and NFWDF. The experimental results are then modeled using rheological models. The results reveal that aloe-vera-based CuO nanofluids improve the thermal stability and rheological properties of drilling fluid and significantly decrease the American Petroleum Institute (API) filtrate. Viscosity for WDF shows an approximately 61.7% decrease in heating up to 90°C. Further, the hot roll aging test causes a 63% decrease in the viscosity of WDF at 90°C. However, the addition of aloe-vera-based CuO nanofluids is found to aid in recovering the viscosities to a great extent. The fluid loss values before hot rolling are observed to be 6.6 mL after 30 minutes, whereas fluid loss values for the NFWDFs are found to be 5.9, 5.4, and 4.6 mL, respectively. The fluid loss value after hot rolling for the WDF is found to be 10.8 mL after 30 minutes, whereas fluid loss values for the NFWDFs are found to be 9.2, 8.5, and 7.7 mL, respectively. The rheological performance data of NFWDF project a better fit with the Herschel-Bulkley model and suggest improvement in rheological and filtration properties. There has been limited research work available in understanding the impact of aloe-vera-gel-based nanofluids in improving the performance of WDFs through the improvement of its rheological and filtration properties. This study aims to exploit the property of native aloe vera and CuO nanofluids combined together to enhance the rheological and filtration properties of WDF by conducting the tests both before and after hot rolling conditions. This study acts as an important precursor for developing novel additives for WDF to improve its rheological and filtration properties. This study is also expected to benefit the industry and solve the major challenges in deep-well drilling operations and high-pressure and high-temperature (HPHT) drilling operations.


2018 ◽  
Vol 151 ◽  
pp. 37-45 ◽  
Author(s):  
Richard O. Afolabi ◽  
Oyinkepreye D. Orodu ◽  
Ifeanyi Seteyeobot

2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


2014 ◽  
Author(s):  
Anietie N. Okon ◽  
Francis D. Udoh ◽  
Perpetua G. Bassey

2019 ◽  
Vol 3 (1) ◽  
pp. 50
Author(s):  
Zakky Zakky ◽  
Bayu Satyawira ◽  
Samsol Samsol

Mud is one of the things that is very supportive in drilling operations, the design of the mud can affect the effectiveness of drilling work, the costs to be incurred, up to when the well is in production. Of course what is expected from a mud usage is low expenditure and drilling with optimal results. Drilling mud plays a very important role in a drilling operation. Drilling that can run quickly, safely and economically is greatly influenced by the conditions and sludge system used. The condition referred to here is how the properties or rheology of the mud. Whereas the mud system referred to here is a certain type of mud that must be used with regard to the state of the formation and borehole. Muddy KCl-POLYMER is a non-dispersed mud, where the hydration and dispersion process of the shale formation drilled must be maintained or maintained as much as possible. There are several ways to achieve this, the most common of which is to limit the amount of water that reacts with the shale, by covering the cutting produced by the shale with the polymer as soon as possible to prevent further reactions with water. In this study, we will analyze the use and physical properties of drilling mud using KCl-Polymer sludge which is carried out in the Trisakti University Laboratory of Petroleum Drilling and Production.


2020 ◽  
Vol 8 (2) ◽  
pp. 122-130
Author(s):  
Narciso Fernando Bila ◽  
Rosilani Trianoski ◽  
Andrade Fernando Egas ◽  
Setsuo Iwakiri ◽  
Marcio Pereira da Rocha

The aim of this study was to evaluate the performance of the messassa wood Brachystegia spiciformis and Julbernardia globiflora for three types of finishing products for use in the furniture and frames industries. Coating performance was assessed by adhesion strength, impact deformation resistance, abrasiveness, gloss and overall color variation tests based on technical standards. Copal painting application was higher for gloss, adhesion and lower abrasiveness compared to water based and polyurethane. The impact deformation was higher for polyurethane than water-based and copal for both species. The darkening of wood for Brachystegia spiciformis and a slight lightening of wood by Julbernardia globiflora characterize the overall color variation after application of the coating products. According to these results, the varnishes can be used to add value to the messassa wood as a finish in solid wood furniture and frames.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Emine Avci ◽  
Bayram Ali Mert

In this study, the rheological properties and performances of mud prepared with geothermal spring water to be used by geothermal drilling operators were examined at ambient and elevated temperatures. In this context, mud samples were prepared in the compositions detailed in the API specification by using five different geothermal spring water types and a distilled water type. Afterwards, density, apparent viscosity, plastic viscosity, yield point, gel strength, fluid loss, pH, and filter cake thickness of these samples were measured. The drilling muds were analyzed by means of rheological tests in accordance with the standards of the American Petroleum Institute (API). The experimental results have revealed that the mud prepared with geothermal water have lower viscosity and yield point compared to those prepared with freshwater at elevated temperatures. The stability of the muds decreases, especially at temperatures higher than 250°F, and they start to become flocculated. It was concluded that geothermal water-based muds have higher API fluid loss and cake thickness than the freshwater-based one. Therefore, it could be interpreted that the muds prepared with geothermal spring water will exhibit lower flow performance and lower ability of hole cleaning and rate of penetration compared to the freshwater muds. Hence, it is recommended that this kind of water should not be used to prepare drilling mud.


Sign in / Sign up

Export Citation Format

Share Document