scholarly journals OPTIMATION PARAMETERS OF CNC MILLING PROGRAMMING MACHINE ON THE PROCESS TIME AND ITS EFFECT ON THE EFFICIENCY

2019 ◽  
Vol 3 (2) ◽  
pp. 62 ◽  
Author(s):  
Lydia Anggraini ◽  
Ivan Junixsen

The problems revealed in this research is about Optimization parameters of CNC milling programing machine on the process time and its effect on the efficiency. The purpose of this research are to know the effect of feed rate, depth of cut, and maximum stepdown on processing time in CNC milling programming and searching for the best machining parameters that yield optimal processing time on CNC milling programming. The result can be in the simulation of machining distance or operation time, length of feed step or feed cut length, and length of step without feeding or fast traverse length. Experiment result data is used for see the influence, and contribution of each parameter to the machining process time, also the contribution of the optimized parameters for each process that makes the CNC milling machining process time, and cost will be more efficient.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
I G.N.K. Yudhyadi ◽  
Tri Rachmanto ◽  
Adnan Dedy Ramadan

Milling process is one of many machining processes for manufacturing component. The length of time in the process of milling machining is influenced by selection and design of machining parameters including cutting speed, feedrate and depth of cut. The purpose of this study to know the influence of cutting speed, feedrate and depth of cut as independent variables versus operation time at CNC milling process as dependent variables. Each independent variable consists of three level of factors; low, medium and high.Time machining process is measured from operation time simulation program, feed cut length and rapid traverse length. The results of statistically from software simulation MasterCam X Milling, then do comparison to CNC Milling machine.  The data from experiments was statistical analyzed by Anova and Regression methods by software minitab 16.Results show that the greater feedrate and depth of cut shorten the operation time of machinery, whereas cutting speed is not significant influence. Depth of cut has the most highly contribution with the value of 49.56%, followed by feedrate 43% and cutting speed 0.92%. Optimal time of machining process total is 71.92 minutes, with machining parameter on the condition cutting speed is 75360 mm/minutes, feedrate is 800 mm/minutes and depth of cut = 1 mm. Results of comparison time machining process in software Mastercam X milling with CNC Milling machine indicates there is difference not significant with the value of 0,35%.


2017 ◽  
Vol 18 (1) ◽  
pp. 147-154
Author(s):  
Mohammad Yeakub Ali ◽  
Wan Norsyazila Jailani ◽  
Mohamed Rahman ◽  
Muhammad Hasibul Hasan ◽  
Asfana Banu

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.


2020 ◽  
Vol 1 (2) ◽  
pp. 62-71
Author(s):  
Festo Andre Hardinsi ◽  
Oyong Novareza ◽  
Achmad As’ad Sonief

Abstrak Objektif. Getaran yang sering terjadi pada pengerjaan proses produksi menggunakan permesinan CNC milling merupakan hal yang sangat penting untuk diperhitungkan. Getaran ini dapat menyebabkan perubahan dimensi dan mempengaruhi tingkat kualitas benda kerja yang dihasilkan, sehingga efek getaran chatter atau self-excited vibration  pada proses pengerjaan produksi menjadi masalah utama dalam proses permesinan milling. Nilai getaran chatter ditentukan menggunakan grafik SLD secara ekperimental untuk mengetahui batas antara chatter free dan chatter occurs. Material and Metode. Material yang digunakan dalam penelitian ini adalah Stanless steel 304, dengan menggunakan sensor MPU 6050 yang terhubung pada mikrokontroler Arduino Uno menggunakan software LabVIEW 2019 student edition yang digunakan untuk mengidentifikasi nilai acceleration getaran chatter. Besar nilai acceleration diukur menggunakan FFT menggunakan software DIAdem 2019 student. Metode yang digunakan dalam penelitian ini adalah dalam bentuk eksperimental, dengan geometri pahat Variabel Helix Angle (VHA) 2 variasi sudut yaitu 40/42 (Derajat), Spindel Speed sebesar 2000,2500,3000 (RPM) , Axial Depth Of Cut sebesar 0.5, 1.0, 1.5 (mm), dan Feed Rate sebesar 100, 125 dan 150 (mm/s). Hasil. Hasil pada Grafik Stability Lobe Diagram yang didapatkan pada proses permesinan slot milling menggunakan pahat variable helix angle 40/42 derajat dengan feed rate 150 mm/mnt memiliki  chatter free yang lebih tinggi dibandingkan dengan feed rate 100 dan 125 mm/mnt. Kesimpulan.  Dari hasil yang didapatkan bahwa semakin tinggi nilai feed rate maka nilai acceleration getaran chatter semakin rendah. Untuk pengembangan dalam penelitian selanjutkan maka perlu dilakukan pemilihan parameter geometri pahat dengan variasi 3 sudut mata pahat untuk mengetahui nilai getaran chatter yang signifikan. Abstrack Objective.Vibration that often occurs in the production process using CNC milling is very important to be taken into account. This is vibration can cause dimensional changes and affect the level of quality of the workpiece produced. Therefore, effect of chatter vibration or self-excited vibration on production process becomes a major problem in the milling machining process. Chatter vibration values ​​can be determined using experimental SLD for determine boundary between free chatter and chatter occur. Materials and Methods .The material used in this study is stanless steel 304, using the MPU 6050 sensor connected to Arduino Uno mikrokontroler using LabVIEW 2019 student edition software that is used to identify chatter vibration acceleration. Acceleration is measured using FFT using  2019 student DIAdem software. The method used is experimental, geometry Variable Helix Angle 2 angular 40/42 (Degrees), Spindel Speed ​​of 2000,2500,3000 (RPM), Axial Depth Of Cut of 0.5, 1.0, 1.5 (mm), and Feed Rate of 100, 125 and 150 (mm / s). Results. Results in the Graph Lobe Stability Diagram obtained in  slot milling machining process using a variable helix angle of 40/42 degrees with  feed rate of 150 mm / min have higher chatter free compared to feed rates of 100 and 125 mm / min. Conclusion. The results show that  higher the value of  feed rate, chatter vibration acceleration value is lower. For further development in research, it is necessary to select  tool geometry parameters with variations of 3 tool eye angle to determine  chatter vibration significant


2010 ◽  
Vol 154-155 ◽  
pp. 721-726 ◽  
Author(s):  
Mohd Sayuti ◽  
Ahmed Aly Diaa Mohammed Sarhan ◽  
Mohd Hamdi Bin Abd Shukor

Glass is one of the most difficult materials to be machined due to its brittle nature and unique structure such that the fracture is often occurred during machining and the surface finish produced is often poor. CNC milling machine is possible to be used with several parameters making the machining process on the glass special compared to other machining process. However, the application of grinding process on the CNC milling machine would be an ideal solution in generating special products with good surface roughness. This paper studies how to optimize the different machining parameters in glass grinding operation on CNC machine seeking for best surface roughness. These parameters include the spindle speed, feed rate, depth of cut, lubrication mode, tool type, tool diameter and tool wear. To optimize these machining parameters in which the most significant parameters affecting the surface roughness can be identified, Taguchi optimization method is used with the orthogonal array of L8(26). However, to obtain the most optimum parameters for best surface roughness, the signal to noise (S/N) response analysis and Pareto analysis of variance (ANOVA) methods are implemented. Finally, the confirmation test is carried out to investigate the improvement of the optimization. The results showed an improvement of 8.91 % in the measured surface roughness.


2014 ◽  
Vol 699 ◽  
pp. 198-203 ◽  
Author(s):  
Raja Izamshah Raja Abdullah ◽  
Aaron Yu Long ◽  
Md Ali Mohd Amran ◽  
Mohd Shahir Kasim ◽  
Abu Bakar Mohd Hadzley ◽  
...  

Polyetheretherketones (PEEK) has been widely used as biomaterial for trauma, orthopaedic and spinal implants. Component made from Polyetheretherketones generally required additional machining process for finishing which can be a problem especially to attain a good surface roughness and dimensional precision. This research attempts to optimize the machining and processing parameters (cutting speed, feed rate and depth of cut) for effectively machining Polyetheretherketones (PEEK) implant material using carbide cutting tools. Response Surface Methodology (RSM) technique was used to assess the effects of the parameters and their relations towards the surface roughness values. Based on the analysis results, the optimal machining parameters for the minimum surface roughness values were by using cutting speed of 5754 rpm, feed rate of 0.026 mm/tooth and 5.11 mm depth of cut (DOC).


Author(s):  
Thanh-Qua Nguyen ◽  
Jeongmin Mah ◽  
Woo-Tae Park ◽  
Sangyoup Lee

Abstract In an effort to make microfluidic research more attractive and cost-effective, micromilled polymethyl methacrylate (PMMA) has gained interests as an alternative method to the conventional cleanroom-based micromolds fabrication technologies. The most enabling aspects of micromilling are flexibility on the design changes and the ability to fabricate three-dimensional structures. However, the major drawback of micromilling based micromold fabrication is the presence of burrs and tool marks on the surface after machining. High surface roughness on replicated polymer results in poor bonding strength and optical clarity. The roughness of micromilled surface strongly depends on the machining parameters such as tool size, spindle speed, feed rate, width of cut, and depth of cut. Thus, it is crucial to optimize the machining parameters to obtain a good surface finish. Although the optimal fabrication parameters are used to machine the micromold, the surface roughness of micromilled mold is still relative high compared to the surface of unprocessed PMMA. In this paper, we first optimize the micromilling parameters of Computer Numerical Control (CNC) milling machine to achieve the best possible of surface roughness. We have optimized the machining parameters for a flat endmill with 100 μm, 200 μm, and 400 μm in diameter of spindle speed, feed rate, width of cut, and the depth of cut respectively at 18000 rpm, 20 mm/min, 30 μm, and 20 μm. Then, a method to polish the structured surface of the micromilled mold was developed using the rotary magnetic field. By modifying the CNC program language G-code, we were able to control the polishing path, polishing force and time precisely. Consequently, the burrs and tool marks are completely removed, such that the roughness of the surface is decreased from 350 nm Ra to 30 nm Ra, and 1200 nm Rz to 300 nm Rz while the profile of microstructures is not deteriorated. Finally, we demonstrate our mold fabrication scheme by building a microfluidic immunoassay device with four Quake’s valves and showed the sequential assay process successfully.


Author(s):  
M.A. Hanafiah ◽  
A.A. Aziz ◽  
A.R. Yusoff

Surface quality is among the predominant criterion in measuring machining process performance, including milling. It is extremely dependent on the process variable, such as cutting parameters and cutting tool conditions. The main intention of this research work is to study the effect of the milling machining parameters, including depth of cut, spindle speed, feed rate as well as machining pattern to the final surface area roughness of the fabricated dimple structure. The concave profile of the dimple is machined at the right angle to a flat Al6061 specimen using a ball end mill attached to a 3-axis CNC milling machine, and the surface area of the concave profile is measured using 3D measuring laser microscope. It is observed that surface area roughness reacts with the spindle speed and feed rate with different tool sizes. Based on the result gained, the work has successfully characterised the influence of studied milling parameters on the dimple surface area roughness, where within the range of the studied parameter, the surface area roughness varies only less than 2.2 μm. The research work will be continued further on the incline milling technique and micro size ball end mill.


Author(s):  
V. Vijayan ◽  
B. Sureshkumar ◽  
G. Sathishkumar ◽  
R. Yokeshwaran

Turning is the machining process carried out to make cylindrical parts. Since the process is economical and the flexibility of turning operation is high, the process has become highly versatile among the industrial scenario. The design of experiments concept along with response surface methodology is used to analyze the machining parameters such as spindle seed, feed rate and depth of cut, of the turning operation. Three levels of spindle speed, feed rate and depth of cut are used as input parameters and their corresponding responses such as material removal rate (M.R.R), surface roughness, feed force, thrust force and cutting force are considered as the output parameters. The main aim of this experimentation process is to identify the optimal process parameters to get high M R R and low surface roughness. During high spindle speed, the M R R is high and vice versa. Surface roughness is high when its corresponding spindle speed and depth of cut is high. A high spindle speed, the chip formation is continuous whereas in medium speed, discontinuous chip is formed. M.R.R is high when spindle speed, depth of cut and feed rate are high.


2014 ◽  
Vol 984-985 ◽  
pp. 154-158 ◽  
Author(s):  
A. Srithar ◽  
K. Palanikumar ◽  
B. Durgaprasad

Hard turning is one of the important operations for hardened steels and it has more benefits than grinding such as cycle time, process flexibility, and better surface finish at significantly better material removal rate and lesser environment issues. Although the machining process is performed with low feed rate and depths of cut, it results lesser machining time as compared with conventional turning. This paper discusses the machining performance tests on the AISI D2 hardened steel to 64 HRC were carried out using chemical vapor deposition ( cvd) coated carbide insert. Experiments are carried out on lathe using the cutting conditions prefixed. The responses studied in the investigation are cutting forces (fx, fy, and fz) and. The cutting parameters considered for the investigation are feed rate, depth of cut and cutting speed. The performance of machining parameters on response is studied and presented in detail. In chip morphology study results different formation and types of chips operating under various cutting conditions.


2014 ◽  
Vol 590 ◽  
pp. 294-298
Author(s):  
Pichai Janmanee ◽  
Somchai Wonthaisong ◽  
Dollathum Araganont

In this study, effect of machining parameters and wear mechanism in milling process of mold steel AISI-P20 and AISI-1050, using 10 mm twin flute type end mill diameter. The experimental results found that characteristics of milling surfaces and wear of the mill end were directly influenced by changes of parameters for all test conditions. As a result, the quality of milling surfaces also changed. However, mould steels which had the good quality surface is AISI-1050, with roughnesses of 2.120 μm. Quality milling surfaces were milled by using the most suitable parameter feed rate of 45 mm/min, a spindle speed of 637 rpm and a cut depth level of 3 mm, for both grades. Moreover, material removal rate and duration of the milling process, the milling end mills affect wear of the edge in every bite when the feed rate is low, high speed and level depth of cut at least. It was found that limited wear less will affect the surface roughness (Ra) represents the good quality surface.


Sign in / Sign up

Export Citation Format

Share Document