scholarly journals Principles and methods of non-contact DC contactors calculation for alternative power systems

2020 ◽  
Vol 1 (57) ◽  
pp. 9-15
Author(s):  
A. Soskov ◽  
Ya. Forkun ◽  
O. Iegorov ◽  
M. Glebova

It is shown that the principle of control and power supply of a non-contact bi-directional DC contactor by the electrical line voltage is implemented by connecting the electronic control circuit by one output between two opposite powered gate-controlled thyristors of the bilateral switch to the first pole of the contactor and the second one – to the output clamp. As a result, the electrical line voltage is fed to the electronic circuit only for a short time (up to ms), that is determined by the charge time of the switching capacitor to the breakdown voltage of the threshold zener diode. The peculiarities of the heating process of the power semiconductor contactor in different operating conditions were determined, that allowed to develop a methodology that with sufficient accuracy determines such important parameters as rated and operational current of the contactor. In addition, it was found that in order to reduce significantly the capacity of the switching capacitor, and consequently the size and cost, it is necessary while turning on of the switching thyristor the discharging current of the switching capacitor was equal to the current of its charging circuit, and their values should not be less than the maximum allowable current of turning off the gate-controlled thyristor. It is allows to define justified the parameters of the elements that provide a secure turning off the bilateral switch. The researches have also shown that the non-contact contactors due to the introduction of the network voltage control as compared with existing ones have peculiarities which rise competitive abilities. In particular, they are more reliable, they do not need to supply an additional power source, they exclude standard drivers, and minimize energy consumption. Thus, an exemplary aspect of using the obtained scientific result is the ability to create competitive reliable non-contact DC contactors for voltage up to 1000 V and currents of 100-600 A for alternative energy. Key words – non-contact bi-directional DC contactor, switching capacitor, switching thyristor, power semiconductor switch, alternative energy.

2012 ◽  
Vol 717-720 ◽  
pp. 1077-1080 ◽  
Author(s):  
Krishna Shenai ◽  
Philip G. Neudeck ◽  
M. Dudley ◽  
Robert F. Davis

A paradigm shift in the development and utilization of power semiconductor switch technology is proposed. This new "top down" approach begins with the field-reliability of a power semiconductor switch in a power converter circuit is subjected to long-term repetitive-switching under stressful field-operating conditions. This approach is derived from extensive field-reliability data collected on state-of-the-art silicon power MOSFETs in compact computer/telecom power supplies that clearly suggests that power MOSFET field-failures were primarily caused by bulk material defects. A careful survey of power switch technologies reported to-date in Silicon Carbide (SiC) and Gallium Nitride (GaN) further suggests that excessive bulk material defects have predominantly hindered the development and commercialization of cost-effective, high-performance, and reliable high-power devices. A reliability-driven approach is likely to "unlock" the vast potential of SiC (and GaN for moderate power levels) power device technology for high-voltage and high-power switching electronics in order to impact transformative changes.


2020 ◽  
Vol 17 (7) ◽  
pp. 768-779
Author(s):  
Natarajan Narayanan ◽  
Vasudevan Mangottiri ◽  
Kiruba Narayanan

Microbial Fuel Cells (MFCs) offer a sustainable solution for alternative energy production by employing microorganisms as catalysts for direct conversion of chemical energy of feedstock into electricity. Electricity from urine (urine-tricity) using MFCs is a promising cost-effective technology capable of serving multipurpose benefits - generation of electricity, waste alleviation, resource recovery and disinfection. As an abundant waste product from human and animal origin with high nutritional values, urine is considered to be a potential source for extraction of alternative energy in the coming days. However, developments to improve power generation from urine-fed MFCs at reasonable scales still face many challenges such as non-availability of sustainable materials, cathodic limitations, and low power density. The aim of this paper was to critically evaluate the state-of-the-art research and developments in urine-fed MFCs over the past decade (2008-2018) in terms of their construction (material selection and configuration), modes of operation (batch, continuous, cascade, etc.) and performance (power generation, nutrient recovery and waste treatment). This review identifies the preference for sources of urine for MFC application from human beings, cows and elephants. Among these, human urine-fed MFCs offer a variety of applications to practice in the real-world scenario. One key observation is that, effective disinfection can be achieved by optimizing the operating conditions and MFC configurations without compromising on performance. In essence, this review demarcates the scope of enhancing the reuse potential of urine for renewable energy generation and simultaneously achieving resource recovery.


2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 277
Author(s):  
Ivan Grcić ◽  
Hrvoje Pandžić ◽  
Damir Novosel

Fault detection in microgrids presents a strong technical challenge due to the dynamic operating conditions. Changing the power generation and load impacts the current magnitude and direction, which has an adverse effect on the microgrid protection scheme. To address this problem, this paper addresses a field-transform-based fault detection method immune to the microgrid conditions. The faults are simulated via a Matlab/Simulink model of the grid-connected photovoltaics-based DC microgrid with battery energy storage. Short-time Fourier transform is applied to the fault time signal to obtain a frequency spectrum. Selected spectrum features are then provided to a number of intelligent classifiers. The classifiers’ scores were evaluated using the F1-score metric. Most classifiers proved to be reliable as their performance score was above 90%.


Author(s):  
Radka JÍROVÁ ◽  
Lubomír PEŠÍK

Vibroisolation systems of base desks for machine and testing facilities usually cannot effect efficient changing of their own frequencies according to operating conditions. Especially in the case of the automotive industry, the possibility of changing natural frequencies is very desirable. During varying operating conditions, the vibroisolation system needs to be regulated easily and quickly regarding the minimisation of dynamical forces transmitted to the ground and to ensure the stability of the testing process. This paper describes one of the options of tuning the base desk at a relatively short time and by sufficient change of own frequencies, which decides the dynamical behaviour of the whole system.


Author(s):  
M. G. Suresh Kumar ◽  
C. A. Babu

Abstract Nonlinearity is a major constraint in analysing and controlling power systems. The behaviour of the nonlinear systems will vary drastically with changing operating conditions. Hence a detailed study of the response of the power system with nonlinearities is necessary especially at frequencies closer to natural resonant frequencies of machines where the system may jump into the chaos. This paper attempt such a study of a single machine to infinite bus power system by modelling it as a Duffing equation with softening spring. Using the method of multiple scales, an approximate analytical expression which describes the variation of load angle is derived. The phase portraits generated from the slow flow equations, closer to the jump, display two stable equilibria (centers) and an unstable fixed point (saddle). From the analysis, it is observed that even for a combination of parameters for which the system exhibits jump resonance, the system will remain stable if the variation of load angle is within a bounded region.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3432 ◽  
Author(s):  
Fabio Bignucolo ◽  
Manuele Bertoluzzo

The ongoing diffusion of solid-state DC/DC converters makes possible a partial migration of electric power systems from the present AC paradigm to a future DC scenario. In addition, the power demand in the domestic environment is expected to grow considerably, for example, due to the progressive diffusion of electric vehicles, induction cooking and heat pumps. To face this evolution, the paper introduces a novel electric topology for a hybrid AC/DC smart house, based on the solid-state transformer technology. The electric scheme, voltage levels and converters types are thoroughly discussed to better integrate the spread of electric appliances, which are frequently based on internal DC buses, within the present AC distribution networks. Voltage levels are determined to guarantee high safety zones with negligible electric risk in the most exposed areas of the house. At the same time, the developed control schemes assure high power quality (voltage stability in the case of both load variations and network perturbations), manage power flows and local resources according to ancillary services requirements and increase the domestic network overall efficiency. Dynamic simulations are performed, making use of DIgSILENT PowerFactory software, to demonstrate the feasibility of the proposed distribution scheme for next-generation smart houses under different operating conditions.


Author(s):  
Mohammad Omar Abdullah ◽  
Voon Chun Yung ◽  
Audra Anak Jom ◽  
Alvin Yeo Wee ◽  
Martin Anyi ◽  
...  

The eBario project has won the eAsia Award and the Mondialogo Engineering Award in 2004 and 2005 respectively for it’s successful implementation of an Information and Telecommunications Technology Center (ICT) and solar renewable energy-incentive rural community project at the Bario Highland of Sarawak, East Malaysia, Borneo (http://www.unimas.my/ebario/). Although solar photovoltaic (PV) energy has been opted for power generation at the ICT Telecenter for the past five years, there is still a need to investigate the cost-effectiveness of the current energy setup as well as to conduct sustainability study taking into account factors such as system efficiency, weather, costs of fuel, operating costs, as well as to explore the feasibility of implementing alternative energy resources for the rural ICT Telecenter. Recent theoretical study conducted has shown that renewable combined power systems are more sustainable in terms of supplying electricity to the ICT Telecenter, and in a more cost-effective way compared to a standalone PV system which is subject to the cloud and the recent dense haze problems. For that purpose, two combined power systems are being put into consideration namely PV-Hydro and PV-Hydro-Fuel Cell, where the total simulated annualized cost for these two system configurations are US$10,847 and US$76,010 respectively as far as the present location is concerned. The PVHydro-Fuel Cell produces electrical energy at the amount of 3,577 kWh/yr while the annual energy consumption is 3,203 kWhr/yr. On the other hand, PV-Hydro produces 3,789 kWhr/yr of electricity annually load which consumes energy at 3,209 kWhr/yr. Results thus obtained has shown that the PVHydro scheme is expected to have advantages over the existing PV standalone system. Firstly, it is more cost-effective. Secondly, it provides the best outcomes for the local indigenous community and the natural highland environments both for now and the future. Thirdly, it also able to relate the continuity of both economic and social aspects of the local society as a whole. As the combined PV-Hydro system had been chosen, plus for completeness purposes, the present paper also discussed the custom design and construction of a small waterwheel breast-shot hydro-generator, suited to the local location and existing water energy resources. Energy saving design calculations and Sankey diagram showing the energy flows for the new combined system are also given herein. Finally, the energy system performance equations and the performance curves introduced in this study provide a new simple method of evaluating renewable energy systems.


Sign in / Sign up

Export Citation Format

Share Document