scholarly journals THE ACTUAL PROBLEMS OF THE HEAT POWER INDUSTRY OF UKRAINE AND THEIR SOLUTION

Author(s):  
A.S. Makarov ◽  
I.M. Kosygina

The actual problems of the heat power industry of Ukraine have been analyzed. The technological scheme for the preparation of suspension fuel based on coal and liquid organic waste, with the addition of plasticizers and stabilizers has been proposed. The additives top up in suspensions to reduce viscosity and resistance ones, as well as to provide aggregative and sedimentation stability at high concentrations of solids in the systems. This technology makes possibility not only to utilize waste products containing organic substances, but also to reduce the amount of harmful substances generated during the combustion of various fuel types. Ref. 12, Fig. 1, Tab. 2.

Author(s):  
Gabriel Munoz ◽  
Aurélia Marcelline Michaud ◽  
Min Liu ◽  
Sung Vo Duy ◽  
Denis Montenach ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 2829-2836
Author(s):  
Mohamed N Ali ◽  
Mohammed S Fahmy ◽  
Rehab M Elhefny

Due to the large amounts of freshwater consumed in Egypt by the agricultural sector that is more than 85% of Egypt share of freshwater in addition to the high concentrations of salts, chemicals and nutrients produced from fertilizers. Reduction of these pollutants concentrations to an acceptable level and breaking the sedimentation stability of colloidal substances and organic particles for reuse for irrigation purposes was associated with the application of biological treatment with coagulants addition. The flocculation process was performed by using polydiallyldimethylammonium chloride (polyDADMAC) and polyacrylamide grafted oatmeal (OAT-g-PAM). The scale-pilot consists of an aeration tank equipped with an air blower, sedimentation tank followed by a filtration stage through 20 cm of pottery scrubs media. To study the performance of synthetic and grafted polymeric flocculants, 3 trials were performed. Activated sludge process without adding any polymeric flocculants was the control trial. In the second trial, polyDADMAC was added with a dose of 5 mg/l. Finally, OAT-g-PAM with a dose of 1.25 mg/l was used in the third trial. The physicochemical properties of agricultural wastewater were measured at the national research center in Cairo. It was found that OAT-g-PAM incorporated with activated sludge process was the most effective in treating agricultural wastewater as it achieved COD, BOD,TKN, TP, and TSS removal efficiency up to 92.29%, 93.13%, 90.64%, 90.46%, and 92.5%, respectively which made it suitable to reuse for agricultural purposes, in addition to its ability to biodegrade, environmentally friendly, and low dosage required compared to polyDADMAC.


1993 ◽  
Vol 27 (11) ◽  
pp. 193-199 ◽  
Author(s):  
S. Beulker ◽  
M. Jekel

The formation of chlorinated organic substances in bleachery effluents of pulp mills is avoided by changing the bleaching processes to nonchlorinating agents. However, high concentrations of poorly biodegradable and colored lignins are remaining. Precipitation can be one option in physico-chemical treatment of these waters. The influence of alum, lime and magnesium hydroxide as precipitation agents for two different bleachery wastewaters was investigated under various conditions. Alum prove to be the most effective precipitant. Application at an Al/DOC-ratio of 0.5 (g/g) yields a reduction of about 60 % of the soluble organic matter in chlorine-bleachery effluents at the pH = 5.5. Oxygen-bleachery effluents require only half of this specific dosage. Lime precipitation also causes low residual concentrations, but the high chemical demand leads to problems in application. The precipitation with magnesium hydroxide cannot be applied, because remaining concentrations of organic materials are quite high. The changes in bleaching processes are responsible for a new kind of wastewater, which has a significantly lower demand of precipitant


Author(s):  
Anum Ishaq ◽  
Ubaid ur Rahman ◽  
Muhammad Haseeb Ahmad ◽  
Amna Sahar ◽  
Qamar Abbas Syed ◽  
...  

The dairy industry produces waste materials and by-products including soluble and suspended organic substances, wastewater, suspended solids, and whey. These substances contain significant amounts of organic and inorganic toxins that can cause serious health threats if not treated properly. Additionally, toxins produced by dairy waste would negatively affect the environment as well as quality and availability of aquatic resources. However, these waste materials and by-products can be utilized in different ways after proper treatment and processing. This chapter will provide an overview of waste products of dairy industries and highlight different treatments and utilization of these by-products in other industries.


2009 ◽  
Vol 81 (8) ◽  
pp. 1441-1448 ◽  
Author(s):  
Panagiotis Lianos ◽  
Nikoleta Strataki ◽  
Maria Antoniadou

Commercial nanocrystalline titania (titanium dioxide, TiO2) has been used to make TiO2 films, which were employed to photodegrade several organic substances under photocatalytic (PC) or photoelectrochemical (PEC) operation. Hydrogen was produced during both operations while electricity was additionally produced during the PEC operation. Both processes were studied as typical examples of the current trend in the effort to produce useful forms of energy by photodegradation of organic waste materials.


2008 ◽  
Vol 58 (7) ◽  
pp. 1521-1528 ◽  
Author(s):  
H. B. Nielsen ◽  
I. Angelidaki

The present study focuses on process imbalances in Danish centralized biogas plants treating manure in combination with industrial waste. Collection of process data from various full-scale plants along with a number of interviews showed that imbalances occur frequently. High concentrations of ammonia or long chain fatty acids is in most cases expected to be the cause of microbial inhibitions/imbalances while foaming in the prestorage tanks and digesters is the most important practical process problem at the plants. A correlation between increased residual biogas production (suboptimal process conditions) and high fractions of industrial waste in the feedstock was also observed. The process imbalances and suboptimal conditions are mainly allowed to occur due to 1) inadequate knowledge about the waste composition, 2) inadequate knowledge about the waste degradation characteristics, 3) inadequate process surveillance, especially with regard to volatile fatty acids, and 4) insufficient pre-storage capacity causing inexpedient mixing and hindering exact dosing of the different waste products.


2021 ◽  
Vol 11 (19) ◽  
pp. 8939
Author(s):  
Anastasia S. Burlachenko ◽  
Olesya V. Salishcheva ◽  
Lyubov S. Dyshlyuk ◽  
Alexander Y. Prosekov

Surfactants are extremely common organic compounds that enter the environment in large quantities in the form of household and industrial wastewater. The toxicity of surfactants for biological systems, the high concentration of substances and the duration of the bioremediation process of polluted ecosystems requires improving the biotechnology of microbial wastewater treatment for surfactants. The purpose of this work is to study the kinetic laws of the reaction of the biological decomposition of betaine surfactants. Pseudomonas bacteria were used as bio-destructors of the surfactants. Kinetic data were obtained to create the possibility of further optimization of research on the biodegradation of toxic organic substances. The strains that were promising destructors of cocamidopropylbetaine were selected. The toxicity of high concentrations of surfactants in relation to microorganisms of the genus Pseudomonas was proven. Safe values of the surfactant concentration for conducting biodegradation tests were found. A kinetic model of the biodestructive process was constructed. It proves that the processes of biodegradation are described by a kinetic equation of the first order. With the derived equation, it is possible to determine the time interval of biodegradation of cocamidopropylbetaine to the specified values by means of mathematical calculations.


2020 ◽  
Vol 3 (02) ◽  
pp. 44-52
Author(s):  
Dian Hadi Armansyah

The stove is one technology that plays an important role in the utilization of energy at the household scale. The biomass stove studied was a blower system gasification stove. In the blower system, oxygen entering the combustion chamber flows continuously according to the needs of combustion. In this biomass gasification stove study, researchers will also use the biomass stove wall or thermal energy into kinetic energy for grinding blowers and charging systems. This study aims to obtain fuel by utilizing biomass or organic waste as biomass stove fuel and get the energy driving the blower and charging system by utilizing a thermoelectric generator system. biomass stoves used in this study use the principle method of Top-Lif Up Draft (T-LUD) Gasifier, a type of gasifier that matches the characteristics of biomass that has high volatile matter, where the stove is designed intended for biomass fuel from agricultural waste products and industry, boiling 1 kg of water is done using wood chips by varying the area of ​​the air flow door, which is 50%, 75%, and 100%. Can be analyzed Comparison of the performance of the biomass cooker stove and the power generated by the thermoelectric generator, at each door width of the air flow results are different, this is due to the mass of fuel consumption and fire temperature. After calculating the highest thermal efficiency results obtained in the area of ​​50% air flow ventilation and obtained power generated 1.83 watts with 100% ventilation flow door area using wood chips.


Sign in / Sign up

Export Citation Format

Share Document