scholarly journals Thermal Imaging for Detection of Defects in Envelopes of Buildings in Use: Qualitative and Quantitative Analysis of Building Energy Performance

Author(s):  
Anna Ostańska

The proposed interdisciplinary method of identifying defects in the building envelope insulation enables the user to quickly assess the scale of heat loss problems in occupied buildings. The method rests upon the quantitative analysis of macroscopic infrared images of the buildings. The method was applied in practice to assess effects of thermal upgrade project in Dźbów housing estate in Częstochowa, a city located in southern Poland. The results confirmed the applicability of the method to monitoring energy performance of buildings in use without intervention into the building’s fabric and without disturbing the occupants.

Author(s):  
Alla Kariuk ◽  
Roman Mishchenko ◽  
Volodymyr Pents ◽  
Vira Shchepak

Complex comparative analysis of building energy performance rates in EU countries and Ukraine has been carried out.The relation between building insulation rates and European countries climate condition has been investigated. It is illustratedthat there is a significant gap between building energy efficiency characteristics in Ukraine and in most of the EU countries.Economically justified rates of building envelope heat exchange resistance which can lead Ukraine to common Europeanlevel based on optimized calculations are suggested. The necessity for further increase in building envelope heat exchange resistancerates in order to raise building energy efficiency and put Ukrainian building regulations in harmony with EU countriescorresponding norms is proved.


2010 ◽  
Vol 29-32 ◽  
pp. 2789-2793
Author(s):  
Cheng Wen Yan ◽  
Jian Yao ◽  
Jin Xu

In the present study a GUI tool for the prediction of building energy performance based on a three-layered BP neural network and MATLAB was developed. The inputs for this tool are the 18 building envelope parameters. The outputs are building heating, cooling and total energy consumptions and the energy saving rate. Compared with the complicated mathematical equations, this tool provides a very easy and effective method for students to learn the effects of building envelope performance parameters on the building energy performance. Thus, this tool can be used in building physics and building energy efficiency courses for the design of energy efficient building.


2021 ◽  
Vol 1203 (3) ◽  
pp. 032047
Author(s):  
Kjartan Van den Brande ◽  
Marc Delghust ◽  
Jelle Laverge ◽  
Arnold Jannsens

Abstract To boost the energy performance of buildings, the EU has established a legislative framework including the Energy Performance of Buildings Directive (EPBD). Through this document, EU state members are incentivized to set up a Building Energy performance Assessment Method (BEAM), tailored to the specific needs of the country. There is no standard definition for the energy performance of a building. Since the options are numerous, it is important for the policymaker to define the goals of their specific BEAM first, before developing the BEAM itself. The definition of these goals is a subjective matter and can differ when asked to different organizations in the building sector. To comprehend the desires and perspectives from each different group, a structured overview of the goals that are important for the specific region is needed. For this paper, a method was developed to provide this structured overview and was tested on the legislative energy performance of buildings (EPB) framework of Flanders, Belgium. The Flemish framework was initiated in 2006 and is still in action today. The method consists of two steps. In the first step, a multi-level tree structure for goal mapping based on the Goal Breakdown Structure (GBS) was developed. The main goal, reducing global warming, is on top of the tree structure, which then subdivides into many sub-goals on different levels. An example of a goal on the lowest level of the structure could be the insulation level of the walls. In the second step, prominent stakeholders in the Flemish building industry, including policymakers, researchers, manufacturers, contractors and building owners, were surveyed to capture their expectations from a BEAM and to query whether the current BEAM corresponds with those expectations. The goal of this survey was to receive qualitative, not quantitative input from the stakeholders. In total, 33 respondents completed the survey. The survey results showed that, in general, the desired goals have not changed substantially compared to the pre-set goals in 2006. Trias Energetica is still the preferred guideline for the decision-making process of the building owner, although its absolute power has decreased slightly and seems to be more prone to the conditions. The current indicator for the overall energy needs (E level) is still strongly preferred, while the recently introduced S level (assessment of the envelope) attracts mixed feelings in terms of usefulness to the entire EPB framework. The overheating indicator receives the most critique for not being accurate enough due to the simplified, single zone BEAM


Sign in / Sign up

Export Citation Format

Share Document