scholarly journals Wave Propagation in Rocks – Investigating the Effect of Rheology

Author(s):  
Tamás Fülöp

Rocks exhibit beyond-Hookean, delayed and damped elastic, behaviour (creep, relaxation etc.). In many cases, the Poynting–Thomson–Zener (PTZ) rheological model proves to describe these phenomena successfully. A forecast of the PTZ model is that the dynamic elasticity coefficients are larger than the static (slow-limit) counterparts. This prediction has recently been confirmed on a large variety of rock types. Correspondingly, according to the model, the speed of wave propagation depends on frequency, the high-frequency limit being larger than the low-frequency limit. This frequency dependence can have a considerable influence on the evaluation of various wave-based measurement methods of rock mechanics. As experience shows, commercial finite element softwares are not able to properly describe wave propagation, even for the Hooke model and simple specimen geometries, the seminal numerical artefacts being instability, dissipation error and dispersion error, respectively. This has motivated research on developing reliable numerical methods, which amalgamate beneficial properties of symplectic schemes, their thermodynamically consistent generalization (including contact geometry), and spacetime aspects. The present work reports on new results obtained by such a numerical scheme, on wave propagation according to the PTZ model, in one space dimension. The simulation outcomes coincide nicely with the theoretically obtained phase velocity prediction.

Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. WA25-WA33 ◽  
Author(s):  
Mercia Betania Costa e Silva ◽  
Alexey Stovas

Wave propagation in a layered medium when the wavelength is much greater than each layer thickness (low frequency) produces a response equivalent to that of wave propagation in an equivalent single-layer medium. This equivalent medium is transversely isotropic with symmetry about a vertical axis (VTI), and the elastic parameters are computed with the Backus averaging technique. Conversely, when the wavelength is comparable to each layer thickness (high frequency), the directional dependence of the phase velocity in the transmission response also can be simulated by replacing the layered medium with a single homogeneous medium with properties derived from a time average. It then can be treated approximately as a VTI medium. To compute the medium parameters, a method based on fitting the traveltime parameters is used. We investigated the relationship between Thomsen’s anisotropic parameters [Formula: see text] and [Formula: see text] computed for the equivalent medium in the low-frequency limit and for the homogenized medium in the high-frequency limit. In our experiments, we used a medium in which layers of only two isotropic materials alternate repeatedly. For the high-frequency limit, we obtained solutions for PP- and SS-wave propagation.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. MR1-MR10 ◽  
Author(s):  
Fuyong Yan ◽  
De-Hua Han ◽  
Tongcheng Han ◽  
Xue-Lian Chen

The layer-induced seismic anisotropy of sedimentary strata is frequency-dependent. At the low-frequency limit, the effective anisotropic properties of the layered media can be estimated by the Backus averaging model. At the high-frequency limit, the apparent anisotropic properties of the layered media can be estimated by ray theory. First, we build a database of laboratory ultrasonic measurement on sedimentary rocks from the literature. The database includes ultrasonic velocity measurements on sandstones and carbonate rocks, and velocity-anisotropy measurements on shales. Then, we simulate the sedimentary strata by randomly selecting a certain number of rock samples and using their laboratory measurement results to parameterize each layer. For each realization of the sedimentary strata, we estimate the effective and apparent seismic anisotropy parameters using the Backus average and ray theory, respectively. We find that, relative to Backus averaging, ray theory usually underestimates the Thomsen parameters [Formula: see text] and [Formula: see text], and overestimates [Formula: see text]. For an effective layered medium consisting of isotropic sedimentary rocks, the differences are significant. These differences decrease when shales with intrinsic seismic anisotropy are included. For the same sedimentary strata, the seismic wave should perceive stronger seismic anisotropy than the ultrasonic wave.


2014 ◽  
Vol 32 (4) ◽  
pp. 443-447 ◽  
Author(s):  
Y. Deng ◽  
A. J. Ridley

Abstract. The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM), which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.


2012 ◽  
Vol 8 (4) ◽  
pp. 508-511 ◽  
Author(s):  
Marissa A. Ramsier ◽  
Andrew J. Cunningham ◽  
Gillian L. Moritz ◽  
James J. Finneran ◽  
Cathy V. Williams ◽  
...  

Few mammals—cetaceans, domestic cats and select bats and rodents—can send and receive vocal signals contained within the ultrasonic domain, or pure ultrasound (greater than 20 kHz). Here, we use the auditory brainstem response (ABR) method to demonstrate that a species of nocturnal primate, the Philippine tarsier ( Tarsius syrichta ), has a high-frequency limit of auditory sensitivity of ca 91 kHz. We also recorded a vocalization with a dominant frequency of 70 kHz. Such values are among the highest recorded for any terrestrial mammal, and a relatively extreme example of ultrasonic communication. For Philippine tarsiers, ultrasonic vocalizations might represent a private channel of communication that subverts detection by predators, prey and competitors, enhances energetic efficiency, or improves detection against low-frequency background noise.


2021 ◽  
Author(s):  
Reed W. Spencer ◽  
John A. Bomidi ◽  
Xu Huang

Abstract This paper reports the development of and the results of high frequency torsional oscillation (HFTO) tests performed on full-sized PDC drill bits and single cutters in a drilling laboratory. The research team used a pressurized laboratory drilling rig to test different drill bit designs in new and worn conditions. These tests were performed in different rock types, at different revolution per minute (RPM), weight on bit (WOB) and depth of cut (DOC) values. High frequency drill stem torque (5120 Hz) and in-bit tangential acceleration (1400 Hz) data were recorded, along with all other drilling parameters. Spectrograms of torque data were plotted to identify frequency changes in time. The torque data was filtered to remove the low frequency behavior and focus on the HFTO behavior. The high frequency torque signal correlates well with in-bit tangential accelerations. Root mean square (RMS) values of this filtered torque signal were calculated and plotted vs average WOB, depth of cut, and torque values. Sharp and worn bit geometry, were dull graded on a per cutter basis and were input to a 3D drilling modeling software and correlated with test data in order to determine the DOC at which wear flats or cutting faces engage the rock and cause changes in HFTO behavior. The main results from this research are 1) a lab test and data analysis were developed that can measure a drill bit's propensity to initiate HFTO vibrations in the BHA, 2) HFTO RMS high-pass filtered torque values generally increase with DOC, 3) bits in the new state show more HFTO behavior if cutter design is more aggressive, and 4) wear flat engagement causes high HFTO behavior.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Roghayeh Abbasiverki ◽  
Richard Malm ◽  
Anders Ansell ◽  
Erik Nordström

Concrete buttress dams could potentially be susceptible to high-frequency vibrations, especially in the cross-stream direction, due to their slender design. Previous studies have mainly focused on low-frequency vibrations in stream direction using a simplified foundation model with the massless method, which does not consider topographic amplifications. This paper therefore investigates the nonlinear behaviour of concrete buttress dams subjected to high-frequency excitations, considering cross-stream vibrations. For comparison, the effect of low-frequency excitations is also investigated. The influence of the irregular topography of the foundation surface on the amplification of seismic waves at the foundation surface and thus in the dam is considered by a rigorous method based on the domain-reduction method using the direct finite element method. The sensitivity of the calculated response of the dam to the free-field modelling approach is investigated by comparing the result with analyses using an analytical method based on one-dimensional wave propagation theory and a massless approach. Available deconvolution software is based on the one-dimensional shear wave propagation to transform the earthquake motion from the foundation surface to the corresponding input motion at depth. Here, a new deconvolution method for both shear and pressure wave propagation is developed based on an iterative time-domain procedure using a one-dimensional finite element column. The examples presented showed that topographic amplifications of high-frequency excitations have a significant impact on the response of this type of dam. Cross-stream vibrations reduced the safety of the dam due to the opening of the joints and the increasing stresses. The foundation modelling approach had a significant impact on the calculated response of the dam. The massless method produced unreliable results, especially for high-frequency excitations. The free-field modelling with the analytical method led to unreliable joint openings. It is therefore recommended to use an accurate approach for foundation modelling, especially in cases where nonlinearity is considered.


2020 ◽  
Vol 223 (3) ◽  
pp. 1708-1723
Author(s):  
Shunsuke Takemura ◽  
Suguru Yabe ◽  
Kentaro Emoto

SUMMARY The source characteristics of offshore seismic events, especially regular (or fast) and slow earthquakes, can provide key information on their source physics and frictional conditions at the plate boundary. Due to strong 3-D heterogeneities in offshore regions, such as those relating to sea water, accretionary prism and small-scale velocity heterogeneity, conventional methods using a 1-D earth model may mis-estimate source parameters such as the duration and radiation energy. Estimations could become severe inaccuracies for small offshore seismic events because high-frequency (>1 Hz) seismograms, which are strongly affected by 3-D heterogeneities, are only available for analysis because of their signal-to-noise ratio. To investigate the effects of offshore heterogeneities on source parameter estimation for small seismic events, we analysed both observed and simulated high-frequency seismograms southeast off the Kii Peninsula, Japan, in the Nankai subduction zone. Numerical simulations of seismic wave propagation using a 3-D velocity structure model clarified the effects of each heterogeneity. Comparisons between observations and model simulations demonstrated that the thick low-velocity accretionary prism has significant effects on high-frequency seismic wave propagation. Especially for shallow low-frequency tremors occurring at depths just below the accretionary prism toe, seismogram durations are significantly broader than an assumed source duration, even for stations with epicentral distances of approximately 10 km. Spindle-shape seismogram envelopes were observed even at such close stations. Our results suggest that incorporating 3-D heterogeneities is necessary for practical estimation of source parameters for small offshore events.


2021 ◽  
Author(s):  
M.N. Mahabubul Alam Chowdhury

The theoretical investigation of acoustical wave propagation in cylindrical layered media is the main interest of our research. The propagation of wire break or slip related acoustical signal in the buried water-filled Prestressed Concrete Cylinder Pipe (PCCP) is taken as a specific application. The PCCPs are widely used for potable-and waste-water distribution and transmission systems, which are generally located below the surface ground. Therefore, it is difficult to inspect or detect the damage caused by the wire-break or slip related events in the pipeline. In current practice, the acoustic emission (AE) monitoring system is used for random examination of prestressing wires by excavating or internal inspecting of the pipe walls, which is based on field data analysis. This gives only the localized knowledge of wire break or slip, which can be misleading, underestimated of the extent of corroded areas, deterioration of wire failure, due to the system resonance, acoustoelasic effect, loading effect, etc. There is no systematic theoretical analysis from the acoustic signal generation to propagation related to these effects, and hence, a common problem in AD technology is to extract the physical features of the ideal events, so as to detect the similar signals. The theoretical analysis is important to understand how the AE signal is generated by the leak, wire break or slip related events and how the path characteristics, excitation frequency, and modes of propagation physically affect the signal propagation. For this purpose, and acoustical model is developed from the Navier's equation of motion. This can simulate vibrating AE signal propagation through the fluid-filled PCCP. The interaction of this propagation with the pipe structure is modeled by using Newton's law of motion in equilibrium. The principle of virtual work is used to develop the fluid-structure interaction. In this work, the impact of the path on the spectral profiles of the vibrating AE signals in different locations throughout the pipes were investigated for low and high frequency excitation signals. At low frequency, there is only plane wave propagation, therefore the stoneley or tube mode analysis is used for this purpose. The tube wave effects on the acoustical wave propagation were observed from this analysis. At high frequencies, there also exist rayleigh or shear modes which exhibit oscillatory amplitudes in the fluid and a decaying amplitude in the pipe and the surrounding medium. The eigenfrequency and the modal analysis is used in this case. From the analyses, the phase velocity, group velocity, tube wave velocity, system resonance frequencies, cut-off frequencies were observed. The high frequency analysis has some special advantage over low frequency signal. This can provide an earlier indication of incipient faults, which is important to detect the AE event in early stage of pipe deterioration. Moreover, it was established that the frequency of propagating AE signal in the pressurizing fluid medium ranges up to 30kHz. Therefore, it is important to investigate the wave propagation of AE signal propagation through the fluid column inside the pipe within the range of sonic/ultrasonic frequency. The acoustic wave propagation in fluid-filled PCCP of various radius, stiffness and thickness of the pipe as well as different types of surrounding medium, is obtained by applying a numerical Finite Element Method (FEM). Finally, the results are compared with available analytical solutions. The proposed model is independent of sources, dimensions and medium characteristics. Therefore, it can be used for the analysis of acoustic wave propagation through any type of cylindrical shells immersed or surrounded by different types of medium. The current analysis, therefore, has fundamental importance in many applications.


Sign in / Sign up

Export Citation Format

Share Document