scholarly journals Calculating ISQ Primary Stability of a Dental Implant through Micromotion

2019 ◽  
Vol 64 (1) ◽  
pp. 43-50
Author(s):  
David Pammer

There are several types of primary and secondary stability measuring methods, but there are no calculating methods to determine direct primary stability. The aim of this work is to make a calculation method for primary stability. The out coming result of the calculation should be the same form and unit as available in the clinical and used RFA (Resonance Frequency Analysis) method, especially the ISQ (Implant Stability Quotient). Dental implant analog screws were inserted in bone modelling standard PUR (Polyurethane) solid foam blocks, and the insertion torque and the micromotion was monitored. The ISQ values of the inserted screws were measured also. On the basis of results, the characteristic equation was determined, which showed an excellent correlation (r = 0.96) between the micro mobility and ISQ. To simulate the micro mobility of an inserted screw with FEA (Finite Element Analysis) in any case of the change the bone material properties is not difficult instead of in vitro and in vivo examinations. Using the simulation results and the characteristic equation the clinically used ISQ value could be determinable. Thanks to this simple method, it is easy to monitor virtually the stability change in any lesion of bone structure. As a result of the conducted measurements and simulations, it can be concluded that the ISQ value, which represent the implant primary stability, can be calculated via FEA. With this simulation method, it is possible to predict and monitor pre-clinically the primary stability of dental implants with new geometries.

2020 ◽  
Vol 995 ◽  
pp. 103-108
Author(s):  
Hassan Mas Ayu ◽  
M.M. Mustaqieem ◽  
Rosdi Daud ◽  
A. Shah ◽  
Andril Arafat ◽  
...  

Finite element analysis (FEA) has been proven to be a precise and applicable method for evaluating dental implant systems. This is because FEA allows for measurement of the stress distribution inside of the bone and various dental implant designs via simulation analysis during mastication where such measurements are impossible to perform in-vitro or in-vivo experiment. That is why the relationship between implant design and load distribution at the implant bone interface is a crucial issue to understand. This research study focuses on a static simulation and bonding strength for PLA/HA coating on V thread design of dental implant using three-dimensional finite element. The average masticatory muscle that involves in human biting such as X, Y and Z direction will be used to simulate force with load condition of 17.1N, 114.6N and 23.4N respectively. Based on result obtained, the coated dental implant model is more compatible than uncoated model due to lower maximum stress which is reduce about 16%. The coated model also shows lower deformation and higher bonding strength. Outcomes from this research provide a better understanding of stress distribution characteristics that would be useful in order to improve design of dental implant thread and evaluation of the PLA/HA bonding strength applied.


Author(s):  
Diana Larisa ANCUŢA ◽  
Cristin COMAN ◽  
Diana Mihaela ALEXANDRU ◽  
Maria CRIVINEANU

In order to investigate the interaction between the bone and the dental implant, in vivo testsare performed in accordance with the biocompatibility requirements. As in vitro tests do not provide sufficient data on the quality of the implants, the animal models are used because they allow a complete assessment of all the factors involved in the osseointegration process.The aim of the paper is to provide data on the bone structure of animal species involved in dental research, highlighting the complexity of bone structure and osseointegration depending on the species. At the same time, the importance of selecting animal models is emphasized, in order to obtain the most accurate data for the development of dental implants and their use in humans. Following the research, essential data were obtained that helped to synthesize the bone characteristics of animals such as rats, rabbits, pigs, sheep or goats and relate them to the human bone skeleton. These data are useful in choosing an animal model when testing a new dental implant.


2020 ◽  
Vol 8 (1) ◽  
pp. 21 ◽  
Author(s):  
Ferdinando Attanasio ◽  
Alessandro Antonelli ◽  
Ylenia Brancaccio ◽  
Fiorella Averta ◽  
Michele Mario Figliuzzi ◽  
...  

Background: The aim of this in vitro study was to analyse the primary stability of 20 implants placed with Twist drills (TD) versus 20 implants placed with Summers osteotomes (SO) and 20 implants placed with B&B bone compactors (BC) in medullary bone (quality type III and type IV). Methods: The implants were placed in 10 fresh pig ribs fixed on a bench vice in order to avoid micro-movements during surgical procedures and measure recording. Peak insertion torque (PIT) and Peak removal torque (PRT) were recorded with MGT-12 digital torque gauge and ISQ was recorded through OSSTELL ISQ™ device by an independent operator. Results: Comparing our data (Tukey test p = 0.05), it was evidenced a statistically significant difference in the PIT between TD and BC groups (p = 0.01). Analysing ISQ data, there was a statistically significant difference between the TD and BC groups (p = 0.0001) and between the SO and BC groups (p = 0.014). The analysis of PRT evidenced a statistically significant difference between the TD and BC groups (p = 0.038). Conclusions: This study evidenced that bone compactor preparation can positively influence primary implant stability (PS), however further in vivo studies and a larger sample are necessary to assess the usefulness in several clinical settings.


1973 ◽  
Vol 30 (01) ◽  
pp. 138-147 ◽  
Author(s):  
Christopher R. Muirhead

SummaryThe filter loop technique which measures platelet aggregation in vivo in the flowing-blood of the rat was compared to the optical density technique of Born which is carried out in vitro with platelet rich plasma. Using these two experimental models the effect on platelet aggregation of three known inhibitors sulfinpyrazone, dipyridamole and prostaglandin E1, and a novel compound 5-oxo-l-cyclopentene-l-heptanoic acid (AY-16, 804) was determined.The effects on platelet aggregation of the known inhibitors were consistent with information in the literature. Prostaglandin E1 was the most potent inhibitor in both techniques; sulfinpyrazone inhibited aggregation in both models but was less potent than prostaglandin E1. AY-16, 804 exhibited activity in vitro and in vivo similar to that of sulfinpyrazone. Dipyridamole did not inhibit platelet aggregation in vivo and did not inhibit aggregation in vitro in concentrations at which it remained soluble.The filter loop technique is a suitable model for measuring platelet aggregation in the flowing blood of the rat. It is a relatively simple method of determining aggregation and easily adapted to other species.


2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


2021 ◽  
Vol 6 (12) ◽  
pp. 4568-4579
Author(s):  
Xiaoyu Huang ◽  
Yang Ge ◽  
Bina Yang ◽  
Qi Han ◽  
Wen Zhou ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (12) ◽  
pp. 5612
Author(s):  
Stefano Fanali ◽  
Margherita Tumedei ◽  
Pamela Pignatelli ◽  
Alessandra Lucchese ◽  
Francesco Inchingolo ◽  
...  

Background: Implant primary stability can be affected by several factors related to implant macrogeometry, local anatomy, and surgical techniques. The aim of this research was to study primary stability on polyurethane foam sheets of wide-threaded implant design compared to narrow-threaded implants. Materials and methods: Two different implant designs were positioned on D3 density polyurethane blocks in a standardized environment: the wide-threaded implant and the narrow-threaded implant, for a total of 160 specimens. Moreover, for each group, two different sizes were considered: 3.8mm × 12mm and 4.8mm × 12 mm. The insertion torque (IT) values, the removal strength (RT), and the Periotest analyses were evaluated. Results: A significantly higher IT and RT was reported for wide-threaded implants and two-stage implants (p < 0.01), compared to the narrow-threaded implants. The diameters seemed to provide a significant effect on the primary stability for both implants’ geometry (p < 0.01). A higher mean of the one-stage implant was evident in the Periotest measurements (p < 0.01). Conclusions: Both of the implants showed sufficient stability in polyurethane artificial simulation, while the wide-threaded implant design showed a higher primary stability on alveolar cancellous synthetic bone in vitro. Additionally, the prosthetic joint connection seemed to have a determinant effect on Periotest analysis, and the one-stage implants seemed to provide a high stability of the fixture when positioned in the osteotomy, which could be important for the immediate loading protocol.


2021 ◽  
Vol 11 (14) ◽  
pp. 6353
Author(s):  
Vittoria D’Esposito ◽  
Josè Camilla Sammartino ◽  
Pietro Formisano ◽  
Alessia Parascandolo ◽  
Domenico Liguoro ◽  
...  

Background: The aim of this research was to evaluate the effects of three different titanium (Ti) implant surfaces on the viability and secretory functions of mesenchymal stem cells isolated from a Bichat fat pad (BFP-MSCs). Methods: Four different Ti disks were used as substrate: (I) D1: smooth Ti, as control; (II) D2: chemically etched, resembling the Kontact S surface; (III) D3: sandblasted, resembling the Kontact surface; (IV) D4: blasted/etched, resembling the Kontact N surface. BFP-MSCs were plated on Ti disks for 72 h. Cell viability, adhesion on disks and release of a panel of cytokines, chemokines and growth factor were evaluated. Results: BFP-MSCs plated in wells with Ti surface showed a viability rate (~90%) and proliferative rate comparable to cells plated without disks and to cells plated on D1 disks. D2 and D4 showed the highest adhesive ability. All the Ti surfaces did not interfere with the release of cytokines, chemokines and growth factors by BFP-MSCs. However, BFP-MSCs cultured on D4 surface released a significantly higher amount of Granulocyte Colony-Stimulating Factor (G-CSF) compared either to cells plated without disks and to cells plated on D1 and D2. Conclusions: The implant surfaces examined do not impair the BFP-MSCs cell viability and preserve their secretion of cytokines and chemokines. Further in vitro and in vivo studies are necessary to define the implant surface parameters able to assure the chemokines’ optimal release for a real improvement of dental implant osseointegration.


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1131
Author(s):  
Maricela Santana ◽  
Gonzalo Montoya ◽  
Raúl Herrera ◽  
Lía Hoz ◽  
Enrique Romo ◽  
...  

Dental cementum contains unique molecules that regulate the mineralization process in vitro and in vivo, such as cementum protein 1 (CEMP1). This protein possesses amino acid sequence motifs like the human recombinant CEMP1 with biological activity. This novel cementum protein 1-derived peptide (CEMP1-p3, from the CEMP1’s N-terminal domain: (QPLPKGCAAVKAEVGIPAPH), consists of 20 amino acids. Hydroxyapatite (HA) crystals could be obtained through the combination of the amorphous precursor phase and macromolecules such as proteins and peptides. We used a simple method to synthesize peptide/hydroxyapatite nanocomposites using OCP and CEMP1-p3. The characterization of the crystals through scanning electron microscopy (SEM), powder X-ray diffraction (XRD), high--resolution transmission electron microscopy (HRTEM), and Raman spectroscopy revealed that CEMP1-p3 transformed OCP into hydroxyapatite (HA) under constant ionic strength and in a buffered solution. CEMP1-p3 binds and highly adsorbs to OCP and is a potent growth stimulator of OCP crystals. CEMP1-p3 fosters the transformation of OCP into HA crystals with crystalline planes (300) and (004) that correspond to the cell of hexagonal HA. Octacalcium phosphate crystals treated with CEMP1-p3 grown in simulated physiological buffer acquired hexagonal arrangement corresponding to HA. These findings provide new insights into the potential application of CEMP1-p3 on possible biomimetic approaches to generate materials for the repair and regeneration of mineralized tissues, or restorative materials in the orthopedic field.


2021 ◽  
Author(s):  
Christine Poon

AbstractArthroplasty implants e.g. hip, knee, spinal disc sustain relatively high compressive loading and friction wear, which lead to the formation of wear particles or debris between articulating surfaces. Despite advances in orthopaedic materials and surface treatments, the production of wear debris from any part of a joint arthroplasty implant is currently unavoidable. Implant wear debris induces host immune responses and inflammation, which causes patient pain and ultimately implant failure through progressive inflammation-mediated osteolysis and implant loosening, where the severity and rate of periprosthetic osteolysis depends on the material and physicochemical characteristics of the wear particles. Evaluating the cytotoxicity of implant wear particles is important for regulatory approved clinical application of arthroplasty implants, as is the study of cell-particle response pathways. However, the wear particles of polymeric materials commonly used for arthroplasty implants tend to float when placed in culture media, which limits their contact with cell cultures. This study reports a simple means of suspending wear particles in liquid medium using sodium carboxymethyl cellulose (NaCMC) to provide a more realistic proxy of the interaction between cells and tissues to wear particles in vivo, which are free-floating in synovial fluid within the joint cavity. Low concentrations of NaCMC dissolved in culture medium were found to be effective for suspending polymeric wear particles. Such suspensions may be used as more physiologically-relevant means for testing cellular responses to implant wear debris, as well as studying the combinative effects of shear and wear particle abrasion on cells in a dynamic culture environments such as perfused tissue-on-chip devices.


Sign in / Sign up

Export Citation Format

Share Document