scholarly journals Parametric Optimization and Experimental Validation for Nonlinear Characteristics of Passenger Car Suspension System

Author(s):  
Avesh Mohd ◽  
Rajeev Srivastava

The study deals with the design of the automotive suspension system to better dynamic characteristics in an uncertain operating atmosphere. Vehicle design parameters are to be optimized to achieve better passengers comfort, vehicle body stability, and road holding as the measure of suspension system performance improvement. The design of experiments gives the optimum parametric combination in the domain on the basis of vertical body acceleration data obtained by simulation of a 2-DOF nonlinear quarter car model. Moreover, the nonlinear hysteric behavior foremost design parameters have been characterized through the theoretical and experimental analysis in order to validate the design and to check the analogical viability of the derived model. Finally, the proposed methodology ascertains the optimum design of the suspension system in the time and cost-effective manner. The developed passive design of car suspension system exhibits excellent vibrational characteristics and convinces the acceptable range of vehicle vibration as suggested by ISO-2631-1997.

Author(s):  
J. Jancirani ◽  
P. Sathishkumar ◽  
Manar Eltantawie ◽  
Dennie John

The present article introduces an approach that combines modelling and simulation of air spring actuator and electro-hydraulic actuator for comparison in automotive suspension system. Both hydraulic and air spring actuators are controlling the vehicle body by developing a desired force between sprung mass and unsprung mass using fuzzy logic controller. The vehicle body along with the wheel system is modelled as a two degree of freedom quarter car model. The actuator performance is investigated using the quarter car suspension model under single road bump with severe peak amplitude excitations and random road input. From the results of simulation, it can be concluded that air spring actuator gave better performance than electro-hydraulic actuator in all conditions under vertical body deflection.


Author(s):  
S. D. JABEEN

In this paper, we have formulated mathematical models to optimize the bouncing transmissibility of the sprung mass of the half car system with passengers' seat suspensions considering different road conditions. The corresponding problem has been solved with the help of advanced real coded Genetic Algorithm (GA). The nonlinearity of suspension spring and damper, which are the most important characteristics of the suspension, has been taken into account in order to validate the model to real applications. The nonlinear cubic polynomial has been used to describe the spring characteristic and a quadratic polynomial has been used to describe the damper characteristic. The coefficients of each polynomial represent the design parameters of the suspension system and are to be determined. To find these parameters we have formulated a nonlinear optimization problem in which the bouncing transmissibility of the sprung mass at the center of mass has been minimized with respect to technological constraints and the constraints which satisfy the performance as per ISO 2631 standards. The advanced real coded GA has been used to solve this problem in time domain and the results obtained have been compared to those obtained using the existing design parameters. The objective function and the constraints have been evaluated by simulating the vehicle model over two roads with multiple bumps at uniform velocity.


Author(s):  
David Cimba ◽  
Kyle Gilbert ◽  
John Wagner

Sport utility and light-duty commercial vehicles exhibit a higher propensity for rollover during aggressive driving maneuvers, emergency scenarios, and degraded environmental conditions. A variety of strategies have been proposed to reduce vehicle body roll including active suspensions, comprehensive yaw stability systems, and active torsion bars. The active torsion bar systems have recently gained popularity due to their cost effective design and adaptability to existing chassis systems. However, the development of new control algorithms, design of subsystem components, and the evaluation of parameter sensitivity via testing a full scale vehicle is not always practical due to cost and safety concerns. Thus, a modular simulation tool and bench top testing environment is required to facilitate design and performance studies. In this paper, a series of mathematical models will be introduced to describe the vehicle dynamics and the roll prevention system. Representative numerical results are discussed to investigate a vehicle’s transient response with and without an active torsion bar system, as well as the impact of torsion bar and hydraulic component design parameters. Finally, a hardware in-the-loop test environment will be presented.


2014 ◽  
Vol 984-985 ◽  
pp. 629-633
Author(s):  
Palanisamy Sathishkumar ◽  
Jeyaraj Jancirani ◽  
John Dennie

The present article introduces an approach that combines passive and active elements to improve the ride and passenger comfort. The main aim of vehicle suspension system should isolate the vehicle body from road unevenness for maintaining ride and passenger comfort. The ride and passenger comfort is improved by reducing the car body acceleration caused by the irregular road surface. The vehicle body along with the wheel system is modelled as two degrees of freedom one fourth of car model. The model is tested on road bump with severe peak amplitude excitations. In the conclusion, a comparison of active, semi-active and passive suspension is shown using MATLAB simulations.


2011 ◽  
Vol 110-116 ◽  
pp. 671-676
Author(s):  
Nemat Changizi ◽  
Asef Zare ◽  
Nooshin Sheiie ◽  
Mahbubeh Moghadas

The main aim of suspension system is to isolate a vehicle body from road irregularities in order to maximize passenger ride comfort and retain continuous road wheel contact in order to provide road holding. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sathish Kumar Palaniappan ◽  
Rajasekar Rathanasamy ◽  
Sivasenapathy Chellamuthu ◽  
Samir Kumar Pal

It is well-known that suspension systems plays a major role in automotive technology. Most of the today’s vehicle applies a passive suspension systems consisting of a spring and damper. The design of automotive suspension have been a compromise between passenger comfort, suspension travel and road holding ability. This work aims in reducing the suspension travel alone by developing a quarter car model suspension for a passenger car to improve its performance by introducing shape memory alloy spring (Nitinol) instead of traditional spring. A two way shape memory alloy spring possesses two different stiffness in its two different phases (martensite and austenite). In this study, road profile is considered as a simple harmonic profile and vibration analysis of aminiature quarter car model suspension system has been carried out experimentally. Using theoretical method, the displacement of the sprung mass is also studied and discussed. The vibration analysis have been carried out for the suspension system at both phases of the spring and the results gives a significant improvement in reducing the displacement of sprung mass for various excitation frequencies.


Author(s):  
Blas L. Pérez Henríquez

AbstractThis chapter presents a brief overview of the policy design and theoretical environmental economic principles that underpin the concept of emissions trading systems (ETS) as a policy approach to address climate change. It discusses basic environmental economic principles pertinent to the development of market-based solutions to mitigate greenhouse gas (GHG) and co-pollutants. The chapter serves as the technical basis for the broader discussion that this book as a whole presents on the launch of the pilot phase of the Mexican ETS on January 1, 2020. Understanding international program design experiences, theoretical principles, and implementing best practices is key to ensuring Mexico’s success in the transition from the pilot or learning phase to an operational ETS compliance system. This will ensure Mexico fulfills its national climate policy goals and nationally determined contributions (NDC) under the Paris Agreement in a cost-effective manner, while also providing compliance flexibility to the industrial sectors covered under the program. A well-designed ETS ultimately provides the right incentives for industrial carbon emission reductions to drive cost-effective abatement and clean innovation. Secondly, this chapter presents a more in-depth review of policy developments focusing specifically on key implementation lessons from the two most advanced ETS systems in operation to date: (1) the European Union ETS and (2) California’s cap-and-trade program. In short, this chapter outlines a set of key policy lessons and design parameters to support the transition from the pilot Mexican ETS to an operational compliance phase in a socially just, environmentally sound, and cost-effective manner.


2015 ◽  
Vol 761 ◽  
pp. 238-244
Author(s):  
Che Amran Aliza ◽  
Fen Ying Chin ◽  
Mariam Md Ghazaly ◽  
Shin Horng Chong ◽  
Vasanthan Sakthivelu

In this paper, a construction of a prototype to represent passive vehicle suspension system for quarter car model is considered. The prototype is represented by two degree-of freedom quarter-car model which are conventionally used by researchers. This laboratory equipment is developed in order to familiarize students with 2 DoF passive suspension system model. It consists of two masses, two springs and a damper. This equipment is easily dismantled and could be assembled with different spring and damper constants which contribute to different characteristics of the suspension system. A number of experiments have been carried out using the experiment setup in order to identify the suspension system characteristics i.e. experiments with different vehicle body mass, different period for one pulse and different pulse width of input pressure of the road excitation have been conducted. The experiment results are evaluated based on the vehicle body displacement and tire displacement of the prototype. Experiment results show that the pulse width of the input pressure or road profile is directly affected the characteristic of this passive suspension system. Lastly, simulations were done in order to compare the simulation and experimental results.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-6
Author(s):  
Mustafa Mohammed Matrood ◽  
Ameen Ahmed Nassar

The purpose of this research is to control a quarter car suspension system and also to reduce the fluctuated movement caused by passing thevehicle over road bump using modified PID (Proportional Integral and Derivative) controller. The proposed controller deals with dual loopfeedback signals instead of single feedback signal as in the conventional PID controller. The structure of the modified PID controller wascreated by moving the proportional and derivative actions in the feedback path while remaining the integral action in the forward path. Thus,high accuracy results were obtained. Firstly, modelling and simulation of linear passive suspension system for a quarter car system wasperformed using Matlab – Simulink software. Then the linear suspension system was activated and simulated by using an active hydraulicactuator to generate the necessary force which can be regulated and controlled by the proposed controller. The performance of whole systemhas been enhanced with a modified PID controller.


2021 ◽  
Vol 4 (1) ◽  
pp. 119-128
Author(s):  
Mehmet Akif Koç

In this study 3-DOF quarter car model with the three bumps on the rigid road, the assumption has been modeled with the non-random irregularity. To reduce the excessive vibrations occurred on the vehicle body, an active suspension system with the linear actuator has been considered. Moreover, to control this actuator, an adaptive neuro-fuzzy algorithm is designed. The training and testing data of the ANFIS has been obtained from Proportional Integral Derivative (PID) control algorithm. After that the successful training process, a testing procedure has been applied to ANFIS for the measure of the adaptive neuro-fuzzy system with data that are not considered in the training process. Then, the performance of the ANFIS is compared by the PID algorithm and passive suspension system in terms of vehicle body vertical acceleration, vehicle body vertical displacement, and control force. The road model used in the study has been modeled according to non-random road profile mathematical formulation considering periodical and discrete road profile cases. In this formulation, one can easily determine the height, width, and number of the road defect with the series mathematical formulation. Consequently, with the results obtained from the presented study, it is proven that ANFIS is a very effective controlling algorithm to suppress vibration occurred on the vehicle body due to vehicle road interaction. Furthermore, the performance of the ANFIS has been tested with different parameters, for example, different number membership functions (MF), which used the fuzzification of the input parameters.


Sign in / Sign up

Export Citation Format

Share Document