scholarly journals Improvement Measures for Components of Dielectric Elastomers for Heavy Duty Uses Such as Robots and Power Assist Devices

2021 ◽  
Vol 4 (3) ◽  

Dielectric Elastomers (DE) are currently being rapidly researched and developed all over the world as a technology that has begun to be incorporated at a practical level. As a product, game vibrators using DEs are already on the market in the United States and Europe. However, much of the market demand is dominated by more output-focused applications such as DE power suits, DE motors, DE muscles for robots, and larger DE power systems. Attempts have been made to improve elastomers and use new carbon foam materials such as single-walled carbon nano tubes (SWCNTs) and multi-walled carbon nano tubes (MWCNTs) as electrodes for DEs to meet these demands. This paper discusses these issues. Also, by reversing the movement of the DE, it is possible to generate electricity with high efficiency. By attaching the power generation system to the robot, which generates electricity from the movement of the robot, and charges the robot’s battery of the robot, it becomes possible to move the robot more efficiently. This is also discussed in this paper

2021 ◽  
Author(s):  
Seiki Chiba ◽  
Mikio Waki ◽  
Shijie Zhu ◽  
Tonghuan Qu ◽  
Kazuhiro Ohyama

The need for light, high-strength, and artificial muscles is growing rapidly. A well-known type of artificial muscle meeting these requirements is the dielectric elastic (DE) type, which uses electrostatic force between electrodes. In hopes of utilizing, it practically for a variety of purposes, research and development is rapidly progressing all over the world as a technology for practical use. Much of the market demand is dominated by more output-focused applications such as DE power suits, DE motors, DE muscles for robots, and larger DE power systems. To meet these demands, the elasticity of the elastomer is very important. In this paper, we discussed what the important factors are for SS curves, viscoelasticity tests, etc. of the dielectric elastomer materials. Recent attempts have been also made to use new carbon foam materials such as SWCNTs and MWCNTs as electrodes for DEs. These electrodes bring the elastomers to a higher level of performance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 456f-457 ◽  
Author(s):  
Ali O. Sari ◽  
Mario R. Morales ◽  
James E. Simon

Echinacea is a medicinal plant native to North America. It was used extensively by native Americans in the treatment of their ailments. It is presently one of the most popular medicinal plants in the United States. Its popularity has created a large market demand for the roots and foliage of the plant. The gathering of echinacea from the wild is leading to the reduction of native populations and the destruction of its genetic diversity. Cultivation of medicinal echinaceas is hindered by a low seed germination. Dormancy breaking studies were done on freshly harvested seeds of Echinacea angustifolia. Seed lots were placed under light at a constant temperature of 25 °C and at alternate temperatures of 25/15 °C for 14/10 h, respectively. Germination was more rapid and uniform and percent germination higher at 25 °C than at 25/15 °C. Seed tap-water soaking, dry heating, and sharp heating alteration did not increase germination. The application of 1.0 mM ethephon (2-chloroethylphosphoric acid) increased seed germination to 94% at 25 °C and 86% at 25/15 °C. Untreated seeds gave 65% germination at 25 °C and 11% at 25/15 °C. The application of 2500 mg·L–1 and 3500 mg·L–1 of GA to dry seeds and 2500 mg·L–1 to seeds that have been soaked under tap water and then dried increased germination to 82%, 83%, and 83% at 25 °C and 64%, 78%, and 64% at 25/15 °C, respectively.


2021 ◽  
Vol 13 (9) ◽  
pp. 4681
Author(s):  
Khashayar Hamedi ◽  
Shahrbanoo Sadeghi ◽  
Saeed Esfandi ◽  
Mahdi Azimian ◽  
Hessam Golmohamadi

Growing concerns about global greenhouse gas emissions have led power systems to utilize clean and highly efficient resources. In the meantime, renewable energy plays a vital role in energy prospects worldwide. However, the random nature of these resources has increased the demand for energy storage systems. On the other hand, due to the higher efficiency of multi-energy systems compared to single-energy systems, the development of such systems, which are based on different types of energy carriers, will be more attractive for the utilities. Thus, this paper represents a multi-objective assessment for the operation of a multi-carrier microgrid (MCMG) in the presence of high-efficiency technologies comprising compressed air energy storage (CAES) and power-to-gas (P2G) systems. The objective of the model is to minimize the operation cost and environmental pollution. CAES has a simple-cycle mode operation besides the charging and discharging modes to provide more flexibility in the system. Furthermore, the demand response program is employed in the model to mitigate the peaks. The proposed system participates in both electricity and gas markets to supply the energy requirements. The weighted sum approach and fuzzy-based decision-making are employed to compromise the optimum solutions for conflicting objective functions. The multi-objective model is examined on a sample system, and the results for different cases are discussed. The results show that coupling CAES and P2G systems mitigate the wind power curtailment and minimize the cost and pollution up to 14.2% and 9.6%, respectively.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Gabrielly dos Santos Bobadilha ◽  
C. Elizabeth Stokes ◽  
Katie M. Ohno ◽  
Grant Kirker ◽  
Dercilio Junior Verly Lopes ◽  
...  

Cross-laminated timber (CLT) market demand is on the rise in the United States. Adequate protective measures have not been extensively studied. The objective of this study was to investigate the weathering performance of exterior wood coatings. We evaluated coated CLT sample surfaces based on visual appearance, color change (CIE*L*a*b), gloss changes, and water intrusion. From the five exterior wood coatings evaluated, only two showed adequate performance after twelve months field exposure. Based on visual ratings following the ASTM procedures, coating failure occurs more quickly in Mississippi than in Wisconsin, due to its greater decay zone. Both location and coating type impacted the aging of the samples. Artificial weathering results were consistent with natural weathering indicating the two adequate coatings were the most resistant to failure, color, and gloss change. For future studies, new coatings designed for the protection of end-grain in CLT panels should be a target of research and development.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1359
Author(s):  
Anindya-Sundar Jana ◽  
Hwa-Dong Liu ◽  
Shiue-Der Lu ◽  
Chang-Hua Lin

The traditional perturbation and observation (P&O) maximum power point tracking (MPPT) algorithm of a structure is simple and low-cost. However, the P&O algorithm is prone to divergence under solar radiation when the latter varies rapidly and the P&O algorithm cannot track the maximum power point (MPP) under partial shading conditions (PSCs). This study proposes an algorithm from the P&O algorithm combined with the solar radiation value detection scheme, where the solar radiation value detection is based on the solar photovoltaic (SPV) module equivalent conductance threshold control (CTC). While the proposed algorithm can immediately judge solar radiation, it also has suitable control strategies to achieve the high efficiency of MPPT especially for the rapid change in solar radiation and PSCs. In the actual test of the proposed algorithm and the P&O algorithm, the MPPT efficiency of the proposed algorithm could reach 99% under solar radiation, which varies rapidly, and under PSCs. However, in the P&O algorithm, the MPPT efficiency was 96% under solar radiation, which varies rapidly, while the MPPT efficiency was only 80% under PSCs. Furthermore, in verifying the experimental results, the proposed algorithm’s performance was higher than the P&O algorithm.


2013 ◽  
Vol 320 ◽  
pp. 768-773
Author(s):  
Tien Kuei Yu

A technical computer animation for dynamic film, animated short film production to Taiwan by customers to move to the development of the continent, a shrinking market worries. Visible the Taiwan in animation foundry (low-cost, high-quality, high-efficiency) industry, no longer is an advantage. The other hand, the industry has also been realized to cartoons of the United States and Japan and therefore positive efforts (toward the direction of home-made animation Fanmei Jun, 2004). Secondly, the computer animation at this stage of the development of animation industry in Taiwan is the weakest that is, the ability of the financial, legal, and international marketing. Due to the creation of the marketing practices of the finished product is difficult to both creators oriented (Hongfeng Yi, 2004). The research basis the Tsou-Hsiang Ju (2008) using conjoint analysis, analysis of four different preference cluster analysis, five kinds of film properties and their rights, grey relational analysis of dynamic video library field to be named; understand the Hall field the eyes of the average consumer selection situation, it is recommended to design products to meet consumer preferences, and to continue to innovate and reform, driven by the digital content industry to flourish in the international market and to keep pace with foreign manufacturers.


Author(s):  
Biao Li ◽  
Zewei Lyu ◽  
Jianzhong Zhu ◽  
Minfang Han ◽  
Zaihong Sun

AbstractSolid oxide fuel cell combined with heat and power (SOFC-CHP) system is a distributed power generation system with low pollution and high efficiency. In this paper, a 10 kW SOFC-CHP system model using syngas was built in Aspen plus. Key operating parameters, such as steam to fuel ratio, stack temperature, reformer temperature, air flow rate, and air preheating temperature, were analyzed. Optimization was conducted based on the simulation results. Results suggest that higher steam to fuel ratio is beneficial to the electrical efficiency, but it might decrease the gross system efficiency. Higher stack and reformer temperatures contribute to the electrical efficiency, and the optimal operating temperatures of stack and reformer when considering the stack degradation are 750 °C and 700 °C, respectively. The air preheating temperature barely affects the electrical efficiency but affects the thermal efficiency and the gross system efficiency, the recommended value is around 600 °C under the reference condition.


Sign in / Sign up

Export Citation Format

Share Document